

226 Rubber Avenue, Naugatuck, Connecticut

Remedial Action Plan

Borough of Naugatuck

229 Church Street, Naugatuck, Connecticut 06770

Prepared by:

SLR International Corporation

45 Glastonbury Boulevard, Glastonbury, Connecticut, 06033

SLR Project No.: 126.V20367.00001 Client Reference No: BF-00A01460

July 21, 2025

Limitations

The services described in this work product were performed in accordance with generally accepted professional consulting principles and practices. No other representations or warranties, expressed or implied, are made. These services were performed consistent with our agreement with our client. This work product is intended solely for the use and information of our client unless otherwise noted. Any reliance on this work product by a third party is at such party's sole risk.

Opinions and recommendations contained in this work product are based on conditions that existed at the time the services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. The data reported and the findings, observations, and conclusions expressed are limited by the scope of work. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this work product.

The purpose of an environmental assessment is to reasonably evaluate the potential for, or actual impact of, past practices on a given site area. In performing an environmental assessment, it is understood that a balance must be struck between a reasonable inquiry into the environmental issues and an appropriate level of analysis for each conceivable issue of potential concern. The following paragraphs discuss the assumptions and parameters under which such an opinion is rendered.

No investigation can be thorough enough to exclude the presence of hazardous materials at a given site. If hazardous conditions have not been identified during the assessment, such a finding should not therefore be construed as a guarantee of the absence of such materials on the site, but rather as the result of the services performed within the scope, practical limitations, and cost of the work performed.

Environmental conditions that are not apparent may exist at the site. Our professional opinions are based in part on interpretation of data from a limited number of discrete sampling locations and therefore may not be representative of the actual overall site environmental conditions.

The passage of time, manifestation of latent conditions, or occurrence of future events may require further study at the site, analysis of the data, and/or reevaluation of the findings, observations, and conclusions in the work product.

This work product presents professional opinions and findings of a scientific and technical nature. The work product shall not be construed to offer legal opinion or representations as to the requirements of, nor the compliance with, environmental laws rules, regulations, or policies of federal, state or local governmental agencies.

i

July 21, 2025

SLR Project No.: 126.V20367.00001

Remedial Action Plan

Prepared for:

Borough of Naugatuck
229 Church Street
Naugatuck, Connecticut 06770

This document has been prepared by SLR International Corporation (SLR). The material and data in this report were prepared under the supervision and direction of the undersigned.

Table of Contents

1.0	Introduction & Background	1
1.1	Purpose	1
2.0	Site Setting, Description, & History	2
2.1	Site Setting & Description	2
2.2	Environmental Setting	
2.3	Site History	
2.4	Site Geology, Groundwater, and Surface Water Classification	3
2.5	Regulatory Criteria	3
2.6	Previous Environmental Investigations	5
2.7	Conceptual Remedial Approach	6
3.0	Remediation Planning	8
3.1	Health and Safety	8
3.2	Permits and Approval	8
3.3	Public Notification	8
3.4	Waste Management	g
3.5	Sedimentation and Erosion Control	g
3.6	Dust Control	9
3.7	Decontamination	g
3.8	Site Security	10
3.9	Site Restoration	10
4.0	Site Remediation Activities	11
4.1	Overview of Remedial Activities	11
4.2	Areas of Remedial Activity	11
4.3	Approach to Site Remediation	12
5.0	Sampling and Analysis Plan	14
5.1	Excavation Endpoint Sampling	14
5.2	Clean Fill Sampling	14
5.3	Waste Characterization	14
5.4	Laboratory Analysis	14
6.0	Documentation of Remedial Activities	15

Appended Figures/Tables

Figure 1. Site Location Map

Figure 2. Remedial Areas

Table 1. Soil Analytical Data Table

Table 2. Groundwater Analytical Data Table

Acronyms and Abbreviations

Alaska Administrative Code
Alaska Department of Environmental Conservation
Alaska Department of Transportation & Public Facilities
aqueous film-forming foam
American Society for Testing and Materials
below ground surface
benzene, toluene, ethylbenzene, and xylenes
Corrective Action Plan
Code of Federal Regulations
corrugated metal pipe
chain of custody
cubic yards
drag-reducing agent
diesel-range organics
drill site
gasoline-range organics
method detection limit
microgram per kilogram
microgram per liter
milligrams per kilogram
milligrams per liter
method reporting limit
not detected
National Incident Management System
Organic Incineration Technologies
polynuclear aromatic hydrocarbon
per cubic feet
photoionization detector
personal protective equipment
parts per million
quality assurance
quality assurance review
quality control

July 21, 2025 SLR Project No.: 126.V20367

RCRA	Resource Conservation and Recovery Act
ROW	right of way
RRO	residual range organics
SIM	selective ion monitoring
SLR	SLR International Corporation
SUPSALV	Supervisor of Salvage and Diving
SVE	soil vapor extraction
TAH	total aromatic hydrocarbons
TAqH	total aqueous hydrocarbons
TCLP	toxicity characteristics leaching procedure
TOC	total organic carbon
μg/L	micrograms per liter
μg/kg	micrograms per kilogram
UHF	ultra high frequency
USCS	Unified Soil Classification System
USEPA	U.S. Environmental Protection Agency
VHF	very high frequency
VOC	volatile organic compound
VSM	vertical support members

July 21, 2025 SLR Project No.: 126.V20367

vi

1.0 Introduction & Background

SLR International (SLR) was contracted to conduct environmental assessment and Site remediation planning for the former industrial property known as the Former Naugatuck Recycling Center, located at 226 Rubber Avenue in Naugatuck, Connecticut ("Site" or "Subject Property") (Figure 1). The Subject Property was part of the Goodyear's Metallic Rubber Shoe Co. complex from approximately 1887 through approximately 1923. During this time, the western portion of the property was developed with three buildings. Based on a review of available historical Sanborn mapping of the vicinity, the westernmost building was used for packaging, manufacturing, and storage. Products were varnished and stored in the central building. The easternmost building was primarily used as storage space. By 1960, the Subject Property was operated by United States Rubber Co., which changed its name to Uniroyal, Inc. in 1967. In 1970, Uniroyal, Inc. conveyed the property to the BON, which demolished the buildings by 1972. From May 1991 through July 2, 2020.the Subject Property operated as the Naugatuck Recycling Center. A sign for the recycling center listed various wastes accepted by the former facility, including car batteries, antifreeze, scrap metal, motor oil, and motor oil filters. The recycling center was relocated in 2020.

In July 2025, an Analysis of Brownfield Cleanup Alternatives (ABCA) Remedial Action Plan (RAP) was prepared for the Subject Property by SLR. As part of the process, public participation will be held to discuss the proposed cleanup strategies. This Draft RAP will be finalized based upon comments received during the public participation.

This Remedial Action Plan (RAP) report presents remedial actions currently considered to be preferred alternatives for the Site.

The Site is currently owned by the Borough of Naugatuck ("BON"). The BON currently leases to a seasonal flower vendor. The leased area of the Site will be subject to the Connecticut Transfer Act due to historic hazardous waste drop-offs that were later deemed to be hazardous. The BON did not conduct activities at the Site that would otherwise produced hazardous waste.

In accordance with CGS 22a-133x(g) and 45 days prior to the initiation of remedial activity, public notice of Site remediation shall be issued in the form of clear, visible signage throughout the Site's physical boundaries, a posting in the Borough's most circulated newspaper (The Republican American), and letters of notification sent to the Mayor and Health Official of the BON.

1.1 Purpose

Select remedial options for the Site have been prepared with the goal of achieving compliance with the RSRs specified in Connecticut Regulations 22a-133k-1 through 22c-133k-3.

This RAP focuses upon proposed permanent solutions for the remediation of soils located at the Site within the specified areas. Soil remediation activities covered in this RAP consist of the excavation and off-Site disposal of contaminated soils, rendering soils inaccessible and other engineering controls (ECs) over remaining impacted material in conjunction with the filing of an Environmental Use Restriction (EUR). The soils can also be covered by future building structures if considered for reuse at the Site, rendering the remaining impacted soil inaccessible.

In general, the proposed remedial activities associated with the Site include the following:

July 16, 2025

- July 16, 2025 SLR Project No.: 126.V20367
- 1. Excavation and removal of soil within Remedial Area 1 (Central portion of Site surrounding SB-3, SB-5, and B-4) noted to contain ETPH and PAHs that exceed(s) specific RSR criteria. This soil will be excavated and disposed off-Site at a permitted accepting facility.
- 2. Rendering deeper, lead and arsenic-impacted soil within Remedial Area 2 (Arsenic and lead exceedances encountered in areas along the southern and eastern portions of the Site, in the vicinities of soil borings B-12, B-9, SB-7, and B-11) as inaccessible. The soils will be rendered inaccessible via an EUR and/or engineering controls based on future development plans. Potential Engineered Controls will be conducted in accordance with CGS 22a-133k-2(f)(2)(B) LEP Certification of an Engineering Control Variance, subsection (i)(I), (II), (IV), and (V).
- 3. Groundwater-related compliance issues are not addressed through this RAP at this time.

2.0 Site Setting, Description, & History

2.1 Site Setting & Description

The Subject Property consists of a 1.76-acre parcel located at 226 Rubber Avenue in Naugatuck, Connecticut (Figure 1). The BON Assessor identifies the property as Map Block Lot 35-363 located in the "Rubber Ave Design District". Prior to 2020, the parcel was used by the BON as a recycling/transfer facility.

The Subject Property's former occupant, the Naugatuck Recycling Center, was relocated to the southern abutting property in 2020. The Subject Property is currently occupied by a seasonal flower vendor. Most structural improvements at the property are temporary, including several rows of metal flower racks and a shed. A metal guardrail divides the parcel approximately in half from north to south. The eastern portion of the Subject Property is a gravel lot used for vehicle parking. The Subject Property is accessible via asphalt entrances from Andrew Avenue and Rubber Avenue. The general vicinity includes mixed-use commercial and retail development along Rubber Avenue to the north, east, and west of the property and the Naugatuck Recycling Center to the south.

2.2 Environmental Setting

According to previous investigations, soils at the Site generally consist of fill materials containing anthropogenic materials. Additionally, soil generally consisted of fine to medium sand with traces of silt and gravel in the shallower zone with more coarse gravel and cobbles in the deeper zone. According to the Bedrock Geologic Map of Connecticut (1985), the Site is underlain by Taine Mountain and Collinsville Formation. The Collinsville Formation is described as a mixture of felsic and mafic metavolcanics.

The Site is currently overlain by gravel parking areas and a small area improved with asphalt parking.

2.3 Site History

The Subject Property was part of the Goodyear's Metallic Rubber Shoe Co. complex from approximately 1887 through approximately 1923. During this time, the western portion of the

July 16, 2025 SLR Project No.: 126.V20367

property was developed with three buildings. Based on a review of available historical Sanborn mapping of the vicinity, the westernmost building was used for packaging, manufacturing, and storage. Products were varnished and stored in the central building. The easternmost building was primarily used as storage space. By 1960, the Subject Property was operated by United States Rubber Co., which changed its name to Uniroyal, Inc. in 1967. In 1970, Uniroyal, Inc. conveyed the property to the BON, which demolished the buildings by 1972. From May 1991 through July 2, 2020, the Subject Property operated as the Naugatuck Recycling Center. A sign for the recycling center listed various wastes accepted by the former facility, including car batteries, antifreeze, scrap metal, motor oil, and motor oil filters. The recycling center was relocated in 2020.

2.4 Site Geology, Groundwater, and Surface Water Classification

Geology

Surficial geology of the Site is mapped as sand and gravel overlying sand deposited as glacial ice-contact stratified drift or outwash deposits. Based on previous investigations, borings completed at the Site encountered fine and medium sands, which generally agrees with the mapped descriptions. Artificial fill was noted in borings at depths up to 10'.

Bedrock underlying the Site is mapped as Taine Mountain and Collinsville formation metamorphic bedrock. The formation is a mix of granofels, schist, amphibolite, and gneiss. Outcrops were not observed at the Site.

Groundwater

Groundwater at the Site and within the vicinity is classified as "GB" by the CTDEEP. A GB designation indicates that the water resource is presently known or presumed to be degraded due to historical land use practices in the area and thus may not be suitable for drinking without prior treatment.

Shallow groundwater was observed to flow southeasterly, towards the Lond Meadow Pond Brook. Based on investigations, groundwater was encountered in overburden at depths ranging from approximately 9-15' below grade.

Surface Water

The Site is within the Housatonic River Major and the Long Meadow Pond Brook Subregional watershed basins (6917-00). The Long Meadow Pond brook flows along the southern boundary of the Site. Long Meadow Pond Brook is classified as a "Class B" surface water body.

According to the latest National Flood Hazard Layer (NFHL) mapping provided by the Federal Emergency Management Agency (FEMA), the regulatory floodway (Zone AE) is mapped for the Long Meadow Pond Brook. The southeastern portion of the Site is mapped within Zone X (0.2% annual flood chance), and the remainder of the Site is mapped as an "Area of Minimal Flood Hazard".

2.5 Regulatory Criteria

The Connecticut RSR criteria are used to gauge the relative magnitude of identified releases and assist in determination of potential risks to human health and the environment. The RSRs are used to evaluate the analytical data collected during the environmental investigations conducted at the Site. Based on the findings of the Phase I ESA (SLR, 2020), the Site meets the definition of an "Establishment" as defined by the CTA and thus is subject to investigation

July 16, 2025 SLR Project No.: 126.V20367

and remediation requirements as established in the Connecticut RSRs. The following factors were used to evaluate the levels of COCs in soil and groundwater at the Site:

- The Site is currently zoned for commercial usage and future commercial development plans are intended.
- According to the CTDEEP Water Quality Classification Map, the Site is located within an
 area where groundwater quality has been classified as GB, meaning that water is
 presumed to be not suitable for human consumption without treatment.
- The nearest named surface waterbody is the Long Meadow Pond Brook, which is located along the southern boundary of the Site. Long Meadow Pond Brook is a class Bdesignated surface water body. Class B designated uses are habitat for fish and aquatic life and wildlife; recreation; navigation; and industrial and agricultural water supply.
- In general, groundwater elevation data flows to the southeast towards the Long Meadow Pond Brook. MW-5 and MW-6 are the most downgradient locations for evaluating groundwater compliance criteria.
- In general, fill materials were observed throughout the Site, consisting of anthropogenic material (i.e., asphalt, rubber, brick, concrete, wood, etc).
- A Site-Specific Quality Assurance Project Plan (SS-QAPP) was prepared by SLR and approved by the Environmental Protection Agency (EPA) prior to initiation of each phase of investigation.

Soil Criteria

Regulations of Connecticut State Agencies (RCSA) Section 22a-133k-2 requires polluted soil at a release area to be remediated to meet the Direct Exposure Criteria (DEC) to help ensure that human health is not at risk due to exposure to COCs.

Direct Exposure Criteria (DEC) – The was developed to be protective of human health in the event of direct contact with soil impacted by COCs. Regardless of the use or zoning of the Subject Property, the Residential DEC (RDEC) apply to all properties in Connecticut. The RSRs also contain another category of DEC, the Industrial/Commercial DEC (I/CDEC), which can be used on nonresidential properties with the placement of an ELUR on the Site. Such an ELUR would restrict the use of the Site from residential uses as defined in the RSRs (§22a-133k-1[53]). The DEC apply to all soils within 15 feet of the ground surface regardless of the elevation of the water table. For the purposes of this assessment, both the RDEC and I/CDEC have been considered.

In certain circumstances, soils can be defined as "inaccessible," meaning they are located greater than 15 ft bgs; located beneath four feet of clean soil (unpaved areas); located more than two feet below a paved surface (minimum three inches of bituminous concrete or concrete, which two feet may include the depth of any material used as subbase for the pavement); or located beneath a building or structure approved by CTDEEP. Impacted soils satisfying the definition of "inaccessible" can remain in place as long they are managed through the placement of some form of non-disturbance ELUR.

Revisions to the RSRs in June 2013 also allow polluted fill to be located beneath a bituminous concrete or concrete surface comprised of a minimum of three inches of bituminous concrete or concrete if such fill is:

I. polluted in excess of applicable direct exposure criteria only by semivolatile substances or petroleum hydrocarbons that are normal constituents of bituminous concrete,

- July 16, 2025 SLR Project No.: 126.V20367
- II. polluted by metals in concentrations not more than two times the applicable direct exposure criteria, or
- III. any combination of the substances or limits identified in clause (i) or (ii) of this subparagraph.

Soil considered inaccessible under these newer provisions will also require the implementation of some form of non-disturbance ELUR.

Pollutant Mobility Criteria (PMC) -- The PMC were developed to protect groundwater resources from soil-bound COCs that could mobilize and degrade groundwater quality. Because groundwater at the Site has been classified by CTDEEP as GB, the GB PMC was used to evaluate the available soil data. These criteria apply to all soils located at or above the seasonal high-water table (measured to be between 9.6-11.53' TOC).

Groundwater Criteria

The Groundwater RSRs (Regulations of Connecticut State Agencies [RCSA] Section 22a-133k-3) require that a groundwater plume shall meet the Surface Water Protection Criteria (SWPC) and Volatilization Criteria (VC) or the background concentration for groundwater for each substance in such plume at the point at which the plume discharges to a surface waterbody. Data was compared to the SWPC and Groundwater VC during the investigations.

2.6 Previous Environmental Investigations

Previous environmental investigations performed at the Subject Property that were available for review included SLR's November 20, 2020, Phase I Environmental Site Assessment (ESA) and February 28, 2022, Phase II Environmental Site Investigation (ESI). The following areas of concern (AOCs) were identified in the Phase I ESA:

- AOC-1: Former Manufacturing Operations. Historically, the parcel was part of Goodyear's Metallic Rubber Shoe Co. complex and then Uniroyal, Inc. from approximately 1887 through 1967. The operations at the Subject Property appear to have included the use of petroleum-based products, solvents, varnishes, and metals. Its structures were demolished in 1972, with no reports of environmental investigations pertaining to the quality of the environmental media (i.e., soil or groundwater) left in place.
- AOC-2: Former Recycling Operations. The Subject Property was utilized by the BON as
 a recycling center and municipal waste transfer station that contained various quantities
 of potential contaminants. Operations included the temporary storage of mercurycontaining materials, antifreeze, waste oil, mixed batteries, other materials such as tires
 or metal waste, and/or components with potential sources such as refrigerators, air
 conditioners, etc.
- AOC-3: Offsite Groundwater Impacts. Three properties have had reported releases or impacts on soil. These properties are located hydrologically upgradient or cross-gradient to the Subject Property, and the releases may have had an impact on groundwater at the Subject Property. The properties include the former Risdon manufacturing facility (south), the 246 Rubber Avenue parcel (west), and the former Tucker's Automotive at 251 Rubber Avenue (west).

July 16, 2025 SLR Project No.: 126.V20367

 AOC-4: Temporary Storage of Hazardous Waste. Reported manifests were found for the Subject Property linked to temporary storage and offsite disposal of hazardous waste. The material was handled by a third-party vendor for aggregation and disposal. There was potential for release to the ground surface during these events, which may have impacted Subject Property soil.

As a result of these findings, a Phase II ESI was developed and implemented in 2021. The scope included:

- The installation of 14 soil borings in two phases (SB-1 through SB-8 and B-1 through B-6) across the Subject Property. A total of 15 soil samples were collected from the borings, as well as two duplicate soil samples for quality assurance purposes. Based on their locations and the applicable constituents of concern (COCs), the samples were analyzed for one or more of the following: Volatile Organic Compounds (VOCs), 1,4-Dioxane, Semi-Volatile Organic Compounds (SVOCs), Polycyclic Aromatic Hydrocarbons (PAHs), Extractable Total Petroleum Hydrocarbons (ETPH), Connecticut List of 15 metals (CT 15 Metals), and/or Polychlorinated Biphenyls (PCBs).
- The installation of three permanent groundwater monitoring wells (MW-1 through MW-3). Groundwater sampling was conducted using low-flow methodology, and all samples were analyzed for the following: VOCs, 1,4-Dioxane, SVOCs, ETPH, CT 15 Metals, and PCBs.

The Phase II ESI concluded the following:

- Soil in the central portion of the Subject Property, surrounding SB-3 and SB-5, is impacted by petroleum and PAH compounds at concentrations exceeding the applicable Remediation Standards Regulations (RSR) criteria. This may have resulted from a former petroleum-related release or the presence of non-soil fill materials.
- Groundwater impacts were present at MW-3, as evidenced by elevated concentrations
 of arsenic, lead, ETPH, benzene, and total xylenes. A sewer odor and visual
 discoloration of this sample may be indicative of a potential release in an unmarked
 sewer line in the vicinity, or a potential historical release from manufacturing operations
 or recycling center storage.

2.7 Conceptual Remedial Approach

This RAP includes a discussion of RSR compliance issues and a description of the remedial approach as well as Site management activities including health and safety protocols, waste management procedures, project scheduling, sedimentation and erosion controls, decontamination, Site restoration, and documentation of remedial activities.

Soils that will be excavated from the Site will be stockpiled, characterized and transported to a licensed and approved disposal facility. Soil that remains on-Site will be addressed in accordance with the Connecticut RSRs through the application of an engineered control and rendering soils inaccessible beneath paved surfaces or proposed new structures at the required thicknesses using the required material(s).

Future building construction projects are recommended to include engineered controls to render soils inaccessible beneath. Future construction may require a vapor barrier and potential subslab depressurization system to mitigate potential vapor concerns.

Groundwater remediation is not part of the remedial actions at this time.

3.0 Remediation Planning

The following sections describe the remediation planning tasks to be performed in conjunction with the implementation of the RAP.

3.1 Health and Safety

A Health & Safety Plan (HASP) will need to be developed that meets the requirements of 29 CFR 1910.120 prior to any remedial activities. The HASP is intended to cover SLR employees and Site visitors. The selected remediation contractor will be required to develop and follow its own HASP during all Site activities conducted by that contractor. All soil remediation work should be conducted by personnel that have 40-hour HAZWOPER Occupational Safety and Health Administration (OSHA) training. The HASP will include, at a minimum, the following:

- Brief Site project description
- Potential Site safety hazards
- Chemical constituents of concern
- Project personnel
- Personal protective equipment requirements
- Air monitoring requirements
- Decontamination procedures
- Work zones
- Emergency Resources

3.2 Permits and Approval

The following permits and approvals are anticipated for any of the selected remedial alternatives for this project:

- Local inland wetlands permit
- Local planning and zoning
- Local building permit (upon future building construction)

The project will be completed as a Licensed Environmental Professional (LEP) lead Site.

3.3 Public Notification

The CTDEEP RSRs require public notification of remediation activities. Prior to beginning remedial action, a notice of remedial action in the area newspaper will be submitted, a notification to the municipality's health director and official (mayor) will be submitted, and subcontractor will erect and maintain a sign, as specified in CGS section 22a-133x. Signage during the remediation activities will meet CTDEEP specifications and will be posted throughout the property.

July 16, 2025

3.4 Waste Management

The anticipated waste streams generated during remedial activities include contaminated soil, which may include anthropogenic fill materials such as asphalt, brick, glass, etc.

- Contaminated soil will be removed and disposed off-site. Excavated soil will be temporarily stockpiled on-Site, characterized, and subsequently loaded into transport vehicles for shipping to an approved off-Site facility permitted to accept the waste. Any stockpiles of contaminated material will be covered with impermeable material and secured with sandbags and hay bales.
- Building debris, such as former building foundations, will be segregated from soil to the
 extent practicable prior to disposal. The debris will be stockpiled on-Site and
 characterized. Based on the results of waste characterization, the material will be loaded
 and transported off-Site to an approved facility.
- All decontamination media will be collected, characterized, and transported for off-Site disposal at a facility to accept these wastes.
- Other solid materials (such as plastic sheeting, hay bales, and sandbags) used during
 the remediation activities will be segregated from other waste streams. If the solid
 materials were in contact with contaminated materials, then they will be disposed along
 with the contaminated materials. If the solid materials do not contact contaminated
 materials, they will be treated as municipal waste and disposed as such.

Any waste removed from the Site will be documented by manifest or bill of lading. The Borough of Naugatuck (BON) will be named the generator of the waste, and a representative of the BON will sign the waste profile forms and manifests. The waste disposal contractor will prepare disposal manifests or bills of lading and documentation for BON use.

3.5 Sedimentation and Erosion Control

During all remediation activities, sediment and erosion controls will be required at the Site, especially due to its proximity to the Long Meadow Pond Brook along the southern border. Prior to any remedial activities, an erosion and sedimentation control system (silt fence, hay bales) will be installed along the southern Site boundary. These controls will be installed and maintained in accordance with the Connecticut Guidelines for Soil Erosion and Sediment Control and will be maintained and remain in place until stabilization of Site soils is complete.

3.6 Dust Control

Best management practices will be incorporated to minimize the potential for the COCs at the Site to be released in particulate form during Site activities. Dust control measures will be implemented if dust is observed during remedial activities. These measures will include the use of water to pre-wet soil to prevent airborne migration when visible dust is observed near the Site boundary.

3.7 Decontamination

Decontamination of on-Site heavy equipment will be performed as necessary to minimize the potential spreading of contamination. Brushing, high pressure water, or a steam cleaner will be

July 16, 2025

July 16, 2025 SLR Project No.: 126.V20367

used for equipment decontamination. All decontamination materials will be disposed as controlled material with fluids contained on-Site for infiltration back onto the Site. All equipment shall be decontaminated before leaving the Site.

All vehicular traffic entering and leaving the Site will utilize an established construction entrance where an antitracking pad will help to minimize tracking of material from the Site onto the street.

3.8 Site Security

Temporary fencing will be used at the Subject Property to provide security during remediation activities. Signage will be used to alert the public to the Site conditions, the nature of the project activities, and to provide contact information. The entrance will be gated and locked during nonworking hours to prevent public access to the Site for the duration of the remedial activities.

3.9 Site Restoration

Following the excavation of soil, management of controlled material, and placement of capping material, Site restoration activities will be completed. Site restoration activities include backfilling to grade with approved, clean material, and removal of sediment erosion controls after stabilization of the Site. Site restoration activities will not reduce the amount of cover of the cap and will maintain at least the minimum required thickness of clean soil and/or sub-base over the DEC capped areas. Site restoration will be completed with final inspection completed by a licensed engineer or LEP.

4.0 Site Remediation Activities

The following sections provide a summary of the selected remedial approach to address the known soil impacts with the intent of achieving compliance with the RSRs. The actions include removal and off-Site disposal of select areas of contaminated soil and the application of engineered controls over remaining contaminated soils while filing an ELUR to restrict the use of the Site to avoid potential exposure.

4.1 Overview of Remedial Activities

Based on a review of the environmental investigations, impacted fill was identified throughout the Site, with impacted areas observed in shallow soils in the central portion of the Site and deeper impacts in the southeastern areas of the Site. The impacted soils include varying concentrations of PAHs, ETPH, and metals above the DEC and PMC.

The RSRs define additional specific alternatives to demonstrate compliance with the numeric soil and groundwater criteria as follows:

- Inaccessible Soil The DEC for soil do not apply if the soil is considered inaccessible
 and an ELUR prohibiting disturbance of such soil is recorded. Inaccessible soil is defined
 as being one or more of the following:
 - More than four feet below the ground surface
 - More than two feet below a paved surface consisting of at least three inches of bituminous concrete or concrete, of which two feet may include the pavement subbase material.
- Engineered Control The DEC do not apply if a CTDEEP-approved engineered control
 is installed to physically isolate the underlying soil thereby minimizing the potential for
 contact with the soil. The RSRs also allow a variance to the PMC if the CTDEEPapproved engineered control is impermeable such that migration of liquids through soil is
 minimized.
- Environmentally Isolated Soil The DEC and PMC do not apply to polluted soil located beneath an existing building or beneath another approved permanent structure provided that the soil is the following:
 - Not a continuing source of pollution
 - Not polluted with VOCs, or if it is, the concentration has been reduced to maximum extent prudent.

The remediation of the Site consists of a combination of remedial compliance strategies and the filing of an ELUR to restrict Site use for the prevention of potential exposure.

4.2 Areas of Remedial Activity

Remedial activities will focus on two areas on the Site, referred to as Remedial Area 1 and Remedial Area 2. Impacted soils are present at depths ranging from grade to at least 10' below grade; however, the excavations will be limited to 3' below grade maximum. Refer to Figure 2 for a depiction of the Remediation Areas.

July 16, 2025

4.3 Approach to Site Remediation

The approach for the Site's remediation will consist of excavating and relocating shallow contaminated soils to an off-Site disposal facility and installation of engineered controls and the filing of an ELUR to achieve compliance with the RSRs. In general, the task for Site remediation will include at a minimum the following:

- Site preparation activities
- Excavation and disposal of impacted soil
- Construction of various surfaces
- Installation of engineered controls
- Development of a monitoring program and ELUR

4.3.1 Site Preparation Activities

Prior to conducting any activity at the Site, the BON will meet with the contractor and LEP to discuss the project goals, evaluate potential structural issues, and evaluate equipment and material staging areas. Site preparation activities will include the posting of public notice, notification of Call Before You Dig, and installation of sedimentation and erosion controls. A construction entrance with an antitracking pad will be established to allow access to the Site and prevent cross contamination of the adjacent road surfaces. Site access will be gated to prevent public access during the project.

4.3.2 Excavation and Disposal of Impacted Soil

Within Remedial Area 1, to address impacted soil, the upper three feet is to be excavated and removed. An approximate excavation of 285 tons of impacted soil will be conducted. This excavated material at the Site shall be stockpiled, characterized, and disposed at an approved disposal facility.

This RAP will be updated to reflect the actual excavation dimensions, pending closure sample results.

4.3.3 ELUR and Installation of Engineered Controls (ECS)

Remedial Area 2 contains impacted soils at depths between 4' to at least 10' below grade. No excavations is anticipated to take place within Remedial Area 2. To render the impacted soils as inaccessible and in compliance with the DEC, an EUR will be recorded to satisfy the following:

- Prohibit exposure to inaccessible soil, including, but not limited to, as a result of excavation, demolition, other intrusive activities, or natural occurrences,
- Require the maintenance of the top four (4) feet of soil cover and topography of ground surface, or
 - Require as applicable that:

July 16, 2025

- July 16, 2025 SLR Project No.: 126.V20367
- o Bituminous or reinforced concrete that renders the soil inaccessible is maintained in good condition, and free of gaps or cracks that could expose such soil;
- A building that is used to render soil inaccessible shall consist of a roof, exterior walls, a concrete floor, maintained in good condition and free of gaps or cracks that could expose such soil and such building shall not be removed; or
- Provided that written notice is submitted to the commissioner of the CTDEEP, a
 permanent structure that renders the soil inaccessible.

Future development plans will need to be designed with such conditions. In the event of future construction activities in the area of Remedial Area 2, Engineered Controls may be implemented in order to satisfy the EUR requirements and render soils inaccessible under an impermeable barrier.

4.3.4 RSR Alternatives

Within Remedial Area 2, one concentration of SPLP lead was detected in SB-7 (8-10') exceeding the GB PMC. It appears that based on analytical data, downgradient groundwater has not been impacted by lead. Additionally, downgradient soil samples collected at similar depths did not contain lead concentrations exceeding the GB PMC. To achieve compliance with the GB PMC, alternatives and exemptions within the RSRs will be evaluated.

5.0 Sampling and Analysis Plan

Soil sampling during remediation will be performed to demonstrate the efficacy of the remedial actions. Sampling will be conducted of any clean fill material prior to its delivery to the Site and for waste characterization of any material prior to leaving the Site.

5.1 Excavation Endpoint Sampling

Soil samples will be collected from horizontal and vertical endpoints of the excavations to determine the effectiveness of the remedial activity. Samples will be collected approximately every 10 linear feet along the sidewalls of the excavation within Remedial Area 1. One sample per approximately 60 square feet will be collected from the bottom of the excavation. The soil samples will be submitted to a certified environmental testing laboratory for analysis of the noted COCs, which include ETPH and PAHs.

The soil samples will be analyzed on an expedited basis to allow for timely decisions regarding the potential need to conduct additional soil excavation activities. If additional excavation is deemed necessary or prudent, additional soil samples will be collected at a rate similar to that noted above.

5.2 Clean Fill Sampling

The remedial activities will require some extent of clean fill for backfilling at the Site. At a minimum, one sample of the clean fill material will be collected and analyzed unless multiple sources are used for the material, in which case one sample will be obtained per source. The samples will be submitted to a certified environmental testing laboratory for analysis of ETPH, VOCs, SVOCs, metals, PCBs, pesticides, and herbicides. As an alternative, the suppliers may issue recent analysis of the material from each source for review. All data will be reviewed prior to delivery to the Site.

5.3 Waste Characterization

Waste characterization sampling will be performed to supplement existing information and data for the purpose of satisfying the requirements of the accepting facility. Sampling frequency and analytical parameters will be in accordance with the accepting facility requirements. Waste characterization samples will be submitted to a certified environmental testing laboratory for analysis.

5.4 Laboratory Analysis

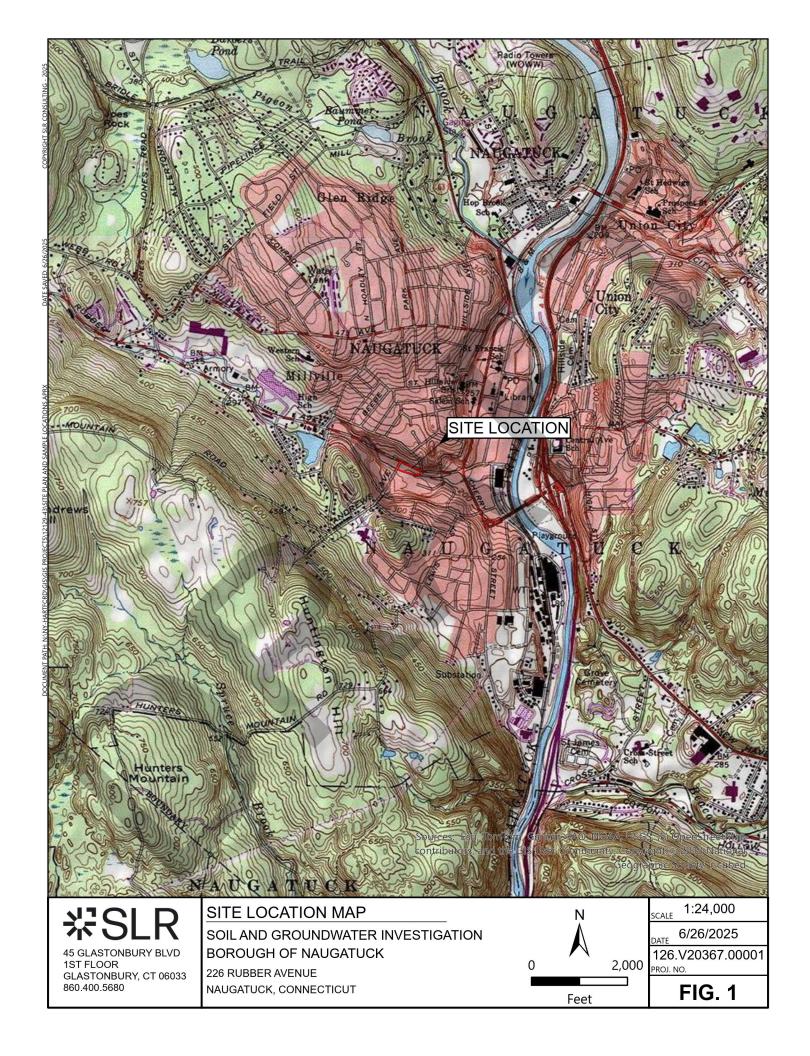
All proposed laboratory analyses will be performed by a laboratory certified to perform such analyses in the State of Connecticut. The detection limits will be selected to be below the accepting facility requirements. The laboratory will be required to perform all the quality control procedures specified in the analytical methods requested. The laboratory will provide a quality assurance/quality control report for review by the LEP for quality control of the data.

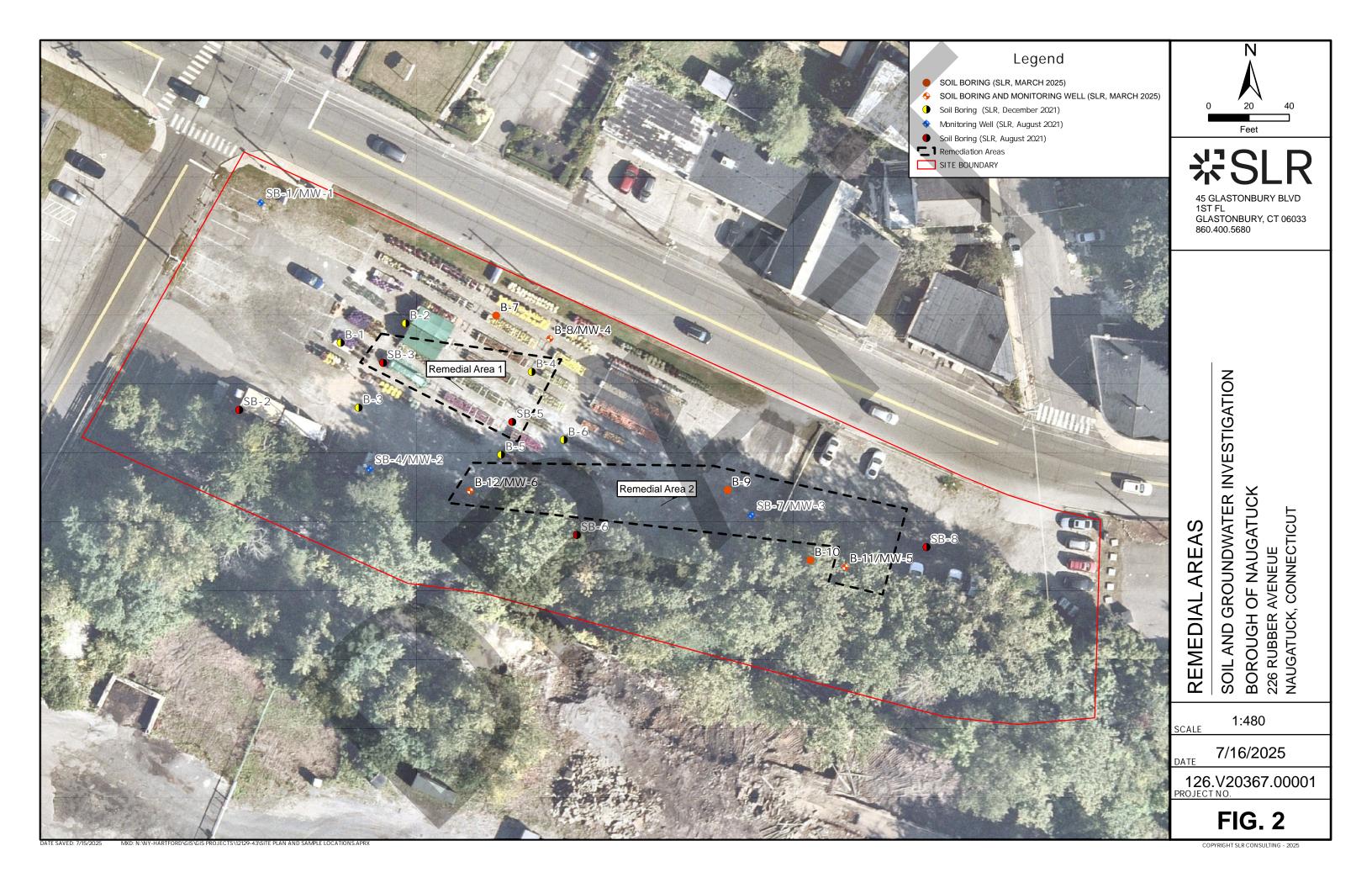
July 16, 2025

July 16, 2025 SLR Project No.: 126.V20367

6.0 Documentation of Remedial Activities

Remedial activities will be conducted under the direction of SLR to allow for changes and/or modifications of the remedial actions if deemed necessary by Site conditions. At the completion of the Site remedial activities, a final Remedial Action Report (RAR) will be provided to the BON. The RAR will include a project narrative, summary of the activities completed, data compilation of laboratory results, documentation of all materials, and photographic documentation of completed activities. In addition, recommendations for future actions, including a maintenance and monitoring plan and/or establishing an ELUR, will be included.




226 Rubber Avenue, Naugatuck, Connecticut

Remedial Action Plan

Borough of Naugatuck

Tables

226 Rubber Avenue, Naugatuck, Connecticut

Remedial Action Plan

Borough of Naugatuck

TABLE 1
SOIL DATA SUMMARY TABLE
PROJECT NAME
226 RUBBER AVENUE, NAUGATUCK, CONNECTICUT

	•				•				1	•			ī	Ī	ī		
				SB-1 (2-3')		SB-3 (1-3')	SB-4 (2-4')	SB-4 (12-	SB-5 (1-2')		SB-7 (8-10')		B-1 (2-3')	B-2 (3-5')	B-3 (1-3')	B-4 (1-3')	B-5 (1-3')
							1080740-04	1080740-05	1080740-06		1080740-08						1120383-05
			te Collected		8/26/2021	8/26/2021	8/26/2021	8/26/2021	8/26/2021	8/26/2021	8/26/2021	8/26/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
			cted (ft bgs)	2-3	1-4	1-3	2-4	12-14	1-2	4-6	8-10	4-7	2-3	3-5	1-3	1-3	1-3
Analyte	GB-PMC	I/C-DEC	R-DEC														1
CT ETPH (mg/kg)		•															
ETPH	2,500	2,500	500	<53	<55	430	<56	<56	720	100	120	220	230	96	290	1,100	<52
15 CTDEEP Metals by EPA		'. 			T.						1				•		-
Antimony	NE	8,200	27	<2.0	<2.1	3.6	<2.2	<2.1	<2.0	<2.1	3.2	2.4					
Arsenic	NE	10	10	2.0	3.8	6.3	4.7	1.4	2.1	2.8	6.5	2.8					
Barium	NE	140,000	4,700	43	49	75	52	120	45	42	90	91					
Beryllium	NE	2	2	<1.0	<1.0	<1.1	<1.1	<1.1	<1.0	<1.0	<1.2	<1.0					
Cadmium	NE	1,000	34	< 0.50	< 0.52	< 0.53	< 0.56	< 0.53	< 0.51	<0.52	<0.58	< 0.52					
Chromium	NE	NE	NE	9.4	11	9.4	13	23	11	10	15	17					
Copper	NE	76,000	2,500	14	16	50	17	24	25	16	26	25					
Lead	NE	1,000	400	140	160	190	120	6.6	21	25	370	230					
Mercury	NE	610	20	< 0.13	< 0.13	0.34	< 0.14	<0.13	< 0.12	< 0.13	0.26	0.16					
Nickel	NE	7,500	1,400	8.8	9.7	12	11	24	10	11	9.8	13					
Selenium	NE	10,000	340	<2.5	<2.6	<2.7	<2.8	<2.7	<2.5	<2.6	<2.9	<2.6					
Silver	NE	10,000	340	<2.0	<2.1	<2.1	<2.2	<2.1	<2.0	<2.1	<2.3	<2.1					
Thallium	NE	160	5.4	<2.0	<2.1	<2.1	<2.2	<2.1	<2.0	<2.1	<2.3	<2.1					
Vanadium	NE	14,000	470,000	20	20	37	26	51	35	20	25	40					
Zinc	NE	610,000	20,000	34	55	330	59	64	65	33	1,000	74					
SPLP Metals by EPA 6020	B (mg/L)																
Antimony	0.06	NA	NA			< 0.0060					<0.0060						
Arsenic	0.5	NA	NA			< 0.0090					0.021						
Barium	10	NA	NA			0.14		+			0.49						
Beryllium	0.04	NA	NA			< 0.0040					< 0.0040						
Cadmium	0.05	NA	NA			< 0.0050					< 0.0050						
Chromium	0.5	NA	NA		7-	< 0.050					< 0.050						
Copper	13	NA	NA			< 0.040					< 0.040						
Lead	0.15	NA	NA			0.04					0.82						
Mercury	0.02	NA	NA			< 0.0020					< 0.0020						
Nickel	1	NA	NA			< 0.050	1	1			< 0.050						
Selenium	0.5	NA	NA			<0.010		1			< 0.010						
Silver	0.36	NA	NA			<0.020					< 0.020						
Thallium	0.05	NA	NA			<0.0050					< 0.0050						
Vanadium	0.5	NA	NA			< 0.050					< 0.050						
Zinc	50	NA	NA			0.14					8.5						
PCBs by EPA Method 8082																	
PCB-1016	NA	10	1			<0.11	<0.11										
PCB-1221	NA	10	1			<0.11	< 0.11										
PCB-1232	NA	10	1			< 0.11	< 0.11										
PCB-1242	NA	10	1			< 0.11	< 0.11										
PCB-1248	NA	10	1		/	< 0.11	< 0.11										
PCB-1254	NA	10	1			< 0.11	< 0.11										
PCB-1260	NA	10	1			< 0.11	< 0.11										
PCB-1262	NA	10	1			< 0.11	< 0.11										
PCB-1268	NA	10	1	-	7-	0.17	< 0.11										
VOCs by EPA Method 8260	OC (ug/kg)	-	-						-	-	-	-	-	-	-		
1,1,1,2-Tetrachloroethane	200	220,000	24,000	<3.2	<6.0	<4.0	<4.0	< 5.0	<4.8	<3.8	<4.2	<4.2					

TABLE 1
SOIL DATA SUMMARY TABLE
PROJECT NAME
226 RUBBER AVENUE, NAUGATUCK, CONNECTICUT

				SB-1 (2-3')	SB-2 (1-4')	SB-3 (1-3')	SB-4 (2-4')	SB-4 (12-	SB-5 (1-2')		SB-7 (8-10')			B-2 (3-5')	B-3 (1-3')	B-4 (1-3')	B-5 (1-3')
		Lab	Sample ID			1080740-03	1080740-04	1080740-05	1080740-06	1080740-07					1120383-03	1120383-04	1120383-05
			e Collected	8/26/2021	8/26/2021	8/26/2021	8/26/2021	8/26/2021	8/26/2021	8/26/2021	8/26/2021	8/26/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
		Pepth Collec		2-3	1-4	1-3	2-4	12-14	1-2	4-6	8-10	4-7	2-3	3-5	1-3	1-3	1-3
Analyte	GB-PMC	I/C-DEC	R-DEC														
1,1,1-Trichloroethane	40,000	1,000,000	500,000	<3.2	<6.0	<4.0	<4.0	< 5.0	<4.8	< 3.8	<4.2	<4.2					
1,1,2,2-Tetrachloroethane	100	29,000	3,100	<3.2	<6.0	<4.0	<4.0	< 5.0	<4.8	<3.8	<4.2	<4.2					
1,1,2-Trichloroethane	1,000	100,000	11,000	<3.2	<6.0	<4.0	<4.0	< 5.0	<4.8	<3.8	<4.2	<4.2					
1,1-Dichloroethane	14,000	1,000,000	500,000	<3.2	<6.0	<4.0	<4.0	< 5.0	<4.8	<3.8	<4.2	<4.2					
1,1-Dichloroethene	1,400	9,500	1,000	<3.2	<6.0	<4.0	<4.0	< 5.0	<4.8	<3.8	<4.2	<4.2					
1,1-Dichloropropene	NE	NE	NE	<3.2	<6.0	<4.0	<4.0	< 5.0	<4.8	<3.8	<4.2	<4.2					
1,2,3-Trichlorobenzene	NE	NE	NE	< 6.5	<12	<8.1	<8.1	<10	<9.5	<7.6	<8.4	<8.4					
1,2,3-Trichloropropane	NE	NE	NE	<3.2	<6.0	<4.0	<4.0	< 5.0	<4.8	<3.8	<4.2	<4.2					
1,2,4-Trichlorobenzene	14,000	200,000	21,000	<3.2	<6.0	<4.0	<4.0	< 5.0	<4.8	<3.8	<4.2	<4.2					
1,2,4-Trimethylbenzene	28,000	1,000,000	500,000	<3.2	<6.0	<4.0	<4.0	< 5.0	<4.8	<3.8	<4.2	<4.2					
1,2-Dibromo-3-chloropropane	40	820	90	<3.2	<6.0	<4.0	<4.0	< 5.0	<4.8	<3.8	<4.2	<4.2					
1,2-Dibromoethane	100	67	7	<3.2	<6.0	<4.0	<4.0	<5.0	<4.8	<3.8	<4.2	<4.2					
1,2-Dichlorobenzene	3,100	1,000,000	500,000	<3.2	<6.0	<4.0	<4.0	<5.0	<4.8	<3.8	<4.2	<4.2					
1,2-Dichloroethane	200	63,000	6,700	<3.2	<6.0	<4.0	<4.0	<5.0	<4.8	<3.8	<4.2	<4.2					
1,2-Dichloropropane	1,000	84,000	9,000	<3.2	<6.0	<4.0	<4.0	<5.0	<4.8	<3.8	<4.2	<4.2					
1,3,5-Trimethylbenzene	28,000	1,000,000	500,000	<3.2	<6.0	<4.0	<4.0	<5.0	<4.8	<3.8	<4.2	<4.2					
1,3-Dichlorobenzene	120,000	1,000,000	500,000	<3.2	<6.0	<4.0	<4.0	<5.0	<4.8	<3.8	<4.2	<4.2					
1,3-Dichloropropane	NA	NA	NA	<3.2	<6.0	<4.0	<4.0	<5.0	<4.8	<3.8	<4.2	<4.2					
1,4-Dichlorobenzene	15,000	240,000	26,000	<3.2	<6.0	<4.0	<4.0	<5.0	<4.8	<3.8	<4.2	<4.2					
2,2-Dichloropropane	NE	NE	NE	<3.2	<6.0	<4.0	<4.0	<5.0	<4.8	<3.8	<4.2	<4.2					
2-Butanone (MEK)	80,000	1,000,000	500,000	<16	<30	<20	<20	<25	<24	<19	<21	<21					
2-Chlorotoluene	28,000	1,000,000	500,000	<3.2	<6.0	<4.0	<4.0	< 5.0	<4.8	<3.8	<4.2	<4.2					
2-Hexanone	7,000	1,000,000	340,000	<16	<30	<20	<20	<25	<24	<19	<21	<21					
4-Chlorotoluene	28,000	1,000,000	500,000	<3.2	<6.0	<4.0	<4.0	<5.0	<4.8	<3.8	<4.2	<4.2					
4-Isopropyltoluene	5,000	1,000,000	500,000	<3.2	<6.0	<4.0	<4.0	<5.0	<4.8	<3.8	<4.2	<4.2					
Acetone	140,000	1,000,000	500,000	<97	<180	<120	<120	<150	<140	<110	<130	<130					
Acrylonitrile	100	11,000	1,100	<5.2	<9.6	<6.5	<6.4	<8.0	<7.6	<6.1	<6.7	<6.7					
Benzene	200	200,000	21,000	<3.2	<6.0	<4.0	<4.0	<5.0	<4.8	<3.8	91	<4.2					
Bromobenzene	NE	NE	NE	<3.2	<6.0	<4.0	<4.0	<5.0	<4.8	<3.8	<4.2	<4.2					
Bromochloromethane	NA	NA	NA	<3.2	<6.0	<4.0	<4.0	< 5.0	<4.8	<3.8	<4.2	<4.2					
Bromodichloromethane	210	170,000	18,000	<3.2	<6.0	<4.0	<4.0	< 5.0	<4.8	<3.8	<4.2	<4.2					
Bromoform	800	720,000	78,000	<3.2	<6.0	<4.0	<4.0	< 5.0	<4.8	<3.8	<4.2	<4.2					
Bromomethane	700	1,000,000	34,000	<6.5	<12	<8.1	<8.1	<10	<9.5	<7.6	<8.4	<8.4					
Carbon disulfide	8,000	1,000,000	500,000	<6.5	<12	<8.1	<8.1	<10	<9.5	<7.6	<8.4	<8.4					
Carbon tetrachloride	1,000	44,000	4,700	<3.2	<6.0	<4.0	<4.0	< 5.0	<4.8	<3.8	<4.2	<4.2					
Chlorobenzene	20,000	1,000,000	500,000	<3.2	<6.0	<4.0	<4.0	< 5.0	<4.8	<3.8	<4.2	<4.2					
Chloroethane	1,500	1,000,000	130,000	<6.5	<12	<8.1	<8.1	<10	<9.5	<7.6	<8.4	<8.4					
Chloroform	1,200	940,000	100,000	<3.2	<6.0	<4.0	<4.0	< 5.0	<4.8	<3.8	<4.2	<4.2					
Chloromethane	3,600	1,000,000	180,000	<6.5	<12	<8.1	<8.1	<10	<9.5	<7.6	<8.4	<8.4					
cis-1,2-Dichloroethene	14,000	1,000,000	500,000	<3.2	<6.0	<4.0	<4.0	< 5.0	<4.8	<3.8	<4.2	<4.2					
cis-1,3-Dichloropropene	NE	NE	NE	<3.2	< 6.0	<4.0	<4.0	< 5.0	<4.8	<3.8	<4.2	<4.2					
Dibromochloromethane	100	68,000	7,300	<3.2	<6.0	<4.0	<4.0	< 5.0	<4.8	<3.8	<4.2	<4.2					
Dibromomethane	NE	NE	NE	<3.2	<6.0	<4.0	<4.0	< 5.0	<4.8	<3.8	<4.2	<4.2					
Dichlorodifluoromethane	70,000	1,000,000	500,000	<9.7	<18	<12	<12	<15	<14	<11	<13	<13					
Ethylbenzene	10,100	1,000,000	500,000	<3.2	<6.0	<4.0	<4.0	< 5.0	<4.8	<3.8	<4.2	<4.2					
Hexachlorobutadiene	1,500	1,200,000	130,000	<3.2	<6.0	<4.0	<4.0	< 5.0	<4.8	<3.8	<4.2	<4.2					

TABLE 1
SOIL DATA SUMMARY TABLE
PROJECT NAME
226 RUBBER AVENUE, NAUGATUCK, CONNECTICUT

			Sample ID	SB-1 (2-3')	SB-2 (1-4')	SB-3 (1-3')	SB-4 (2-4')	SB-4 (12-	SB-5 (1-2')	SB-6 (4-6')	SB-7 (8-10')	SB-8 (4-7')	B-1 (2-3')	B-2 (3-5')	B-3 (1-3')	B-4 (1-3')	B-5 (1-3')
		Lab	Sample ID	1080740-01	1080740-02	1080740-03	1080740-04	1080740-05	1080740-06	1080740-07	1080740-08	1080740-09	1120383-01	1120383-02	1120383-03	1120383-04	1120383-05
		Date	e Collected	8/26/2021	8/26/2021	8/26/2021	8/26/2021	8/26/2021	8/26/2021	8/26/2021	8/26/2021	8/26/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
	D	epth Collec	ted (ft bgs)	2-3	1-4	1-3	2-4	12-14	1-2	4-6	8-10	4-7	2-3	3-5	1-3	1-3	1-3
Analyte	GB-PMC	I/C-DEC	R-DEC														
isopropylbenzene	5,000	1,000,000	500,000	<3.2	<6.0	<4.0	<4.0	< 5.0	<4.8	<3.8	<4.2	<4.2					
m+p Xylenes	19,500	1,000,000	500,000	<6.5	<12	<8.1	<8.1	<10	<9.5	<7.6	99	<8.4					
Methyl isobutyl ketone	14,000	1,000,000	500,000	<16	<30	<20	<20	<25	<24	<19	<21	<21					
methylene chloride	1,000	760,000	82,000	<39	<72	<49	<48	<60	<57	<45	<50	<50				-	
Methyl-t-Butyl Ether (MTBE)	20,000	1,000,000	500,000	<3.2	<6.0	<4.0	<4.0	< 5.0	<4.8	<3.8	<4.2	<4.2					
Naphthalene	56,000	2,500,000	1,000,000	<6.5	<12	<8.1	<8.1	<10	<9.5	<7.6	<8.4	<8.4					
n-Butylbenzene	70,000	1,000,000	500,000	<3.2	<6.0	<4.0	<4.0	< 5.0	<4.8	<3.8	<4.2	<4.2					
n-Propylbenzene	10,000	1,000,000	500,000	<3.2	<6.0	<4.0	<4.0	< 5.0	<4.8	<3.8	<4.2	<4.2					
o-Xylene	19,500	1,000,000	500,000	<3.2	<6.0	<4.0	<4.0	< 5.0	<4.8	<3.8	7.6	<4.2					
sec-Butylbenzene	70,000	1,000,000	500,000	<3.2	<6.0	<4.0	<4.0	< 5.0	<4.8	<3.8	<4.2	<4.2				-	
Styrene	20,000	1,000,000	500,000	<3.2	<6.0	<4.0	<4.0	< 5.0	<4.8	<3.8	<4.2	<4.2					
tert-Butylbenzene	70,000	1,000,000	500,000	<3.2	<6.0	<4.0	<4.0	<5.0	<4.8	<3.8	<4.2	<4.2					
Tetrachloroethene	1,000	110,000	12,000	<3.2	<6.0	<4.0	<4.0	<5.0	<4.8	<3.8	<4.2	<4.2					
Tetrahydrofuran	800	570,000	61,000	<16	<30	<20	<20	<25	<24	<19	<21	<21					
Toluene	67,000	1,000,000	500,000	<3.2	<6.0	<4.0	<4.0	<5.0	<4.8	<3.8	<4.2	<4.2					
trans-1,2-Dichloroethene	20,000	1,000,000	500,000	<3.2	<6.0	<4.0	<4.0	<5.0	<4.8	<3.8	<4.2	<4.2					
trans-1,3-Dichloropropene	NE	NE	NE	<3.2	<6.0	<4.0	<4.0	<5.0	<4.8	<3.8	<4.2	<4.2					
trans-1,4-Dichloro-2-Butene	NE	NE	NE	<16	<30	<20	<20	<25	<24	<19	<21	<21					
Trichloroethene	1,000	520,000	56,000	<3.2	<6.0	<4.0	<4.0	<5.0	<4.8	<3.8	<4.2	<4.2					
Trichlorofluoromethane	200,000	1,000,000	500,000	<26	<48	<32	<32	<40	<38	<30	<34	<34					
Trichlorotrifluoroethane	200,000	1,000,000	500,000	<26	<48	<32	<32	<40	<38	<30	<34	<34					
Vinyl chloride	400	3,000	320	<3.2	<6.0	<4.0	<4.0	< 5.0	<4.8	<3.8	<4.2	<4.2					
SVOCs by EPA Method 8270D (ug/kg)																
1,2,4,5-Tetrachlorobenzene	1,000	610,000	20,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
1,2-Diphenylhydrazine	1,000	7,200	770	<320	<330	<330	<340	<340	<310	<330	<350	<320					
2,3,4,6-Tetrachlorophenol	NE	NE	NE	<320	<330	<330	<340	<340	<310	<330	<350	<320					
2,4,5-Trichlorophenol	140,000	2,500,000	1,000,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
2,4,6-Trichlorophenol	1,000	520,000	56,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
2,4-Dichlorophenol	4,000	2,500,000	200,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
2,4-Dimethylphenol	28,000	2,500,000	1,000,000	<320	<330	< 330	<340	<340	<310	<330	<350	<320					
2,4-Dinitrophenol	2,800	2,500,000	140,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
2,4-Dinitrotoluene	1,000	8,400	900	<320	<330	<330	<340	<340	<310	<330	<350	<320					
2,6-Dichlorophenol	NE	NE	NE	<320	<330	<330	<340	<340	<310	<330	<350	<320					
2,6-Dinitrotoluene	1,000	8,400	900	<320	<330	<330	<340	<340	<310	<330	<350	<320					
2-Chloronaphthalene	110,000	1,000,000	500,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
2-Chlorophenol		2,500,000	340,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
2-Methyl Naphthalene	5,600	1,000,000	270,000	<320	<330	<330	<340	<340	<310	<330	<350	<320	<320	<310	<320	<1,600	<320
2-Methyl Phenol	28,000	2,500,000	1,000,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
2-Nitroaniline	2,000	290,000	31,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
2-Nitrophenol	146,000	1,000,000	500,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
3,3-Dichlorobenzidine	1,000	13,000	1,400	<320	<330	<330	<340	<340	<310	<330	<350	<320					
3+4 Methyl Phenol	24,000	2,500,000	1,000,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
3-Nitroaniline	2,000	290,000	31,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
4,6-Dinitro-2-methylphenol	2,000	610,000	20,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
4-Bromophenyl-phenylether	82,000	1,000,000	500,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
4-Chloro-3-methylphenol	140,000	2,500,000	1,000,000	<320	<330	<330	<340	<340	<310	<330	<350	<320				-	

TABLE 1
SOIL DATA SUMMARY TABLE
PROJECT NAME
226 RUBBER AVENUE, NAUGATUCK, CONNECTICUT

			Sample ID	SB-1 (2-3')	SB-2 (1-4')	SB-3 (1-3')	SB-4 (2-4')	SB-4 (12-	SB-5 (1-2')	SB-6 (4-6')	SB-7 (8-10')	SB-8 (4-7')	B-1 (2-3')	B-2 (3-5')	B-3 (1-3')	B-4 (1-3')	B-5 (1-3')
		Lab	Sample ID	1080740-01	1080740-02	1080740-03	1080740-04	1080740-05	1080740-06	1080740-07	1080740-08	1080740-09	1120383-01	1120383-02	1120383-03	1120383-04	1120383-05
		Date	e Collected	8/26/2021	8/26/2021	8/26/2021	8/26/2021	8/26/2021	8/26/2021	8/26/2021	8/26/2021	8/26/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
	D	epth Collec	ted (ft bgs)	2-3	1-4	1-3	2-4	12-14	1-2	4-6	8-10	4-7	2-3	3-5	1-3	1-3	1-3
Analyte	GB-PMC	I/C-DEC	R-DEC														
4-Chloroaniline	1,000	29,000	3,100	<320	<330	<330	<340	<340	<310	<330	<350	<320					
4-Chlorophenyl-phenylether	82,000	1,000,000	500,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
4-Nitroaniline	2,000	290,000	31,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
4-Nitrophenol	NE	NE	NE	<320	<330	<330	<340	<340	<310	<330	<350	<320					
Acenaphthene	84,000	2,500,000	1,000,000	<320	<330	<330	<340	<340	<310	<330	<350	<320	<320	<310	<320	<1,600	<320
Acenaphthylene	84,000	2,500,000	1,000,000	<320	<330	480	<340	<340	900	<330	<350	<320	<320	<310	<320	<1,600	<320
Aniline	1,200	1,000,000	110,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
Anthracene	400,000	2,500,000	1,000,000	<320	<330	530	<340	<340	620	<330	<350	<320	<320	<310	<320	1,700	<320
Benzo(a)Anthracene	1,000	7,800	1,000	<320	<330	1,500	410	<340	2,000	360	650	<320	<320	350	770	6,100	<320
Benzo(a)pyrene	1,000	1,000	1,000	<320	<330	1,400	440	<340	2,100	360	640	<320	<320	410	770	7,600	<320
Benzo(b)fluoranthene	1,000	7,800	1,000	<320	<330	1,700	470	<340	2,200	410	690	410	<320	530	890	8,200	<320
Benzo(g,h,i)perylene	1,000	78,000	8,400	<320	<330	990	<340	<340	1,300	<330	420	<320	<320	350	520	6,200	<320
Benzo(k)fluoranthene	1,000	78,000	8,400	<320	<330	750	<340	<340	1,100	<330	<350	<320	<320	<310	470	3,900	<320
Benzoic acid	200,000	2,500,000	1,000,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
Benzyl alcohol	NE	NE	NE	<320	<330	<330	<340	<340	<310	<330	<350	<320					
bis(2-Chloroethoxy)methane	4,200	2,500,000	200,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
Bis(2-chloroethyl)ether	2,400	5,200	1,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
Bis(2-chloroisopropyl)ether	2,400	82,000	8,800	<320	<330	<330	<340	<340	<310	<330	<350	<320					
Bis(2-ethylhexyl)phthalate	11,000	410,000	44,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
Butylbenzylphthalate	200,000	2,500,000	1,000,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
Carbazole	1,000	290,000	31,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
Chrysene	1,000	780,000	84,000	<320	<330	1,500	410	<340	2,100	370	680	330	<320	500	710	6,200	<320
Dibenz[a,h]anthracene	1,000	1,000	1,000	<320	<330	<330	<340	<340	310	<330	<350	<320	<320	<310	<320	<1,600	<320
Dibenzofuran	1,400	1,000,000	68,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
Diethylphthalate	200,000	2,500,000	1,000,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
Dimethylphthalate	200,000	2,500,000	1,000,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
Di-n-butylphthalate	140,000	2,500,000	1,000,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
Di-n-octylphthalate	20,000	2,500,000	1,000,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
Fluoranthene	56,000	2,500,000	1,000,000	<320	330	2,700	690	<340	3,000	620	1,300	500	<320	1,200	1,600	9,900	<320
Fluorene	56,000	2,500,000	1,000,000	<320	<330	<330	<340	<340	<310	<330	<350	<320	<320	<310	<320	<1,600	<320
Hexachlorobenzene	1,000	3,600	1,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
Hexachlorocyclopentadiene	8,400	1,000,000	410,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
Hexachloroethane	1,000	410,000	44,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
Indeno[1,2,3-cd]pyrene	1,000	7,800	1,000	<320	<330	810	<340	<340	1,000	<330	<350	<320	<320	<310	430	4,000	<320
Isophorone	7,400	2,500,000	640,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
Nitrobenzene	1,000	41,000	4,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
n-Nitroso-dimethylamine	1,000	360	200	<320	<330	<330	<340	<340	<310	<330	<350	<320					
n-Nitroso-di-n-propylamine	1,000	820	200	<320	<330	<330	<340	<340	<310	<330	<350	<320					
n-Nitrosodiphenylamine	1,400	1,200,000	130,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
Pentachloronitrobenzene	1,400	2,000,000	68,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
Pentachlorophenol	1,000	48,000	5,100	<320	<330	<330	<340	<340	<310	<330	<350	<320					
Phenanthrene	40,000	2,500,000	1,000,000	<320	<330	1,800	<340	<340	1,200	<330	830	<320	<320	580	630	2,700	<320
Phenol	800,000	2,500,000	1,000,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
Pyrene	40,000	2,500,000	1,000,000	<320	<330	2,300	640	<340	3,100	610	1,400	540	<320	960	1,300	11,000	<320
Pyridine	1,000	610,000	20,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
1,3-Dichlorobenzene	120,000	1,000,000	500,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					

TABLE 1
SOIL DATA SUMMARY TABLE
PROJECT NAME
226 RUBBER AVENUE, NAUGATUCK, CONNECTICUT

		_	Sample ID	SB-1 (2-3')	SB-2 (1-4')	SB-3 (1-3')	SB-4 (2-4')	SB-4 (12-	SB-5 (1-2')	SB-6 (4-6')	SB-7 (8-10')	SB-8 (4-7')	B-1 (2-3')	B-2 (3-5')	B-3 (1-3')	B-4 (1-3')	B-5 (1-3')
		Lak	Sample ID	1080740-01	1080740-02	1080740-03	1080740-04	1080740-05	1080740-06	1080740-07	1080740-08	1080740-09	1120383-01	1120383-02	1120383-03	1120383-04	1120383-05
		Dat	e Collected	8/26/2021	8/26/2021	8/26/2021	8/26/2021	8/26/2021	8/26/2021	8/26/2021	8/26/2021	8/26/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
		Depth Collec	ted (ft bgs)	2-3	1-4	1-3	2-4	12-14	1-2	4-6	8-10	4-7	2-3	3-5	1-3	1-3	1-3
Analyte	GB-PMC	I/C-DEC	R-DEC														
1,4-Dichlorobenzene	15,000	240,000	26,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
1,2-Dichlorobenzene	3,100	1,000,000	500,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
1,2,4-Trichlorobenzene	14,000	200,000	21,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
Hexachlorobutadiene	1,500	1,200,000	130,000	<320	<330	<330	<340	<340	<310	<330	<350	<320					
Naphthalene	56,000	2,500,000	1,000,000	<320	<330	<330	<340	<340	<310	<330	<350	<320	<320	<310	<320	<1,600	<320
Percent Solids by SM 2540 G																	
Percent Solids	NA	NA	NA	95	91	91	89	89	95	91	84	93					

Notes

< = Compound not detected above the laboratory reporting limit shown.

---- = Not analyzed

NE = No Standard Established

NA = Standard Not Applicable

μg/kg = micrograms per kilogram

mg/kg = milligrams per kilogram

ft = feet

GA PMC = GA Pollutant Mobility Criteria

I/C DEC= Industrial/Commercial Direct Exposure Criteria.

Res DEC = Residential Direct Exposure Criteria.

Additional Polluting Substances values

CT ETPH = Connecticut Extractable Petroleum Hydrocarbons

PAHs = Polycyclic Aromatic Hydrocarbons

VOCs = Volatile Organic Compounds

SVOCs = Semi-Volatile Organic Compounds

PCBs = Polychlorinated Biphenyls

Bold indicates a detection above laboratory reporting limits

Highlighted results indicate an exceedance of numerical criteria.

TABLE 1
SOIL DATA SUMMARY TABLE
PROJECT NAME
226 RUBBER AVENUE, NAUGATUCK, CONNECTICUT

			Sample ID		B-7 (1-2')	B-7 (3-4')	B-8 (1-2')	B-8 (3-4')	B-9 (8-10')	B-10 (7-9')	B-11 (10')	B-12 (1-2')	B-12 (4-5')
		Lab	Sample ID	1120383-06	25C0670-02			25C0670-05		25C0670-07	25C0670-08	25C0670-09	
		Dat	e Collected	12/10/2021	3/24/2025	3/24/2025	3/24/2025	3/24/2025	3/24/2025	3/24/2025	3/24/2025	3/24/2025	3/24/2025
		Depth Collec	ted (ft bgs)	3-5	1-2	3-4	1-2	3-4	8-10	7-9	10	1-2	4-5
Analyte	GB-PMC	I/C-DEC	R-DEC										
CT ETPH (mg/kg)													
ETPH	2,500	2,500	500	<52	<52	<56	<52	<56				<53	<56
15 CTDEEP Metals by EPA 60	10D (mg/kg)												
Antimony	NE	8,200	27						5.3	<2.2	2.9	<2.0	<2.2
Arsenic	NE	10	10						12	8.5	3.8	<2.0	6.8
Barium	NE	140,000	4,700						68	64	620	26	89
Beryllium	NE	2	2						<1.1	<1.1	<1.3	< 0.98	<1.1
Cadmium	NE	1,000	34						< 0.54	< 0.55	2.4	< 0.49	< 0.55
Chromium	NE	NE	NE						9.6	11	28	10	13
Copper	NE	76,000	2,500						62	33	160	14	21
Lead	NE	1,000	400						120	130	1,200	27	2,200
Mercury	NE	610	20						0.26	0.33	0.80	< 0.13	< 0.14
Nickel	NE	7,500	1,400						10	12	21	7.7	12
Selenium	NE	10,000	340			1			<2.7	<2.8	<3.3	<2.5	<2.7
Silver	NE	10,000	340						<2.2	<2.2	<2.6	<2.0	<2.2
Thallium	NE	160	5.4						<2.2	<2.2	<2.6	<2.0	<2.2
Vanadium	NE	14,000	470,000				/		15	24	37	15	27
Zinc	NE	610,000	20,000				/		130	53	1,300	30	150
SPLP Metals by EPA 6020B (r	ng/L)	•			•						•	•	
Antimony	0.06	NA	NA						< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060
Arsenic	0.5	NA	NA						0.011	< 0.0090	< 0.0090	< 0.0090	< 0.0090
Barium	10	NA	NA						< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Beryllium	0.04	NA	NA						< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040
Cadmium	0.05	NA	NA						< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Chromium	0.5	NA	NA						< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Copper	13	NA	NA	/					< 0.040	< 0.040	< 0.040	< 0.040	< 0.040
Lead	0.15	NA	NA	74					0.028	< 0.013	0.15	< 0.013	0.04
Mercury	0.02	NA	NA						<0.0020	< 0.0020	< 0.0020	< 0.0020	<0.0020
Nickel	1	NA	NA						< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Selenium	0.5	NA	NA						< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Silver	0.36	NA	NA						< 0.020	<0.020	<0.020	<0.020	< 0.020
Thallium	0.05	NA	NA						< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Vanadium	0.5	NA	NA						< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Zinc	50	NA	NA						0.024	<0.020	0.095	<0.020	<0.020
PCBs by EPA Method 8082A									0.02.	101020		10.020	101020
PCB-1016	NA	10	1										
PCB-1221	NA	10	1										
PCB-1232	NA	10	1										
PCB-1242	NA	10	1										
PCB-1248	NA	10	1										
PCB-1254	NA NA	10	1										
PCB-1260	NA	10	1										
PCB-1262	NA	10	1										
PCB-1268	NA NA	10	1										
/OCs by EPA Method 8260C		10											
		220,000	24.000		I	I	I	 	1		T	1	
1,1,1,2-Tetrachloroethane	200	220,000	24,000										

TABLE 1
SOIL DATA SUMMARY TABLE
PROJECT NAME
226 RUBBER AVENUE, NAUGATUCK, CONNECTICUT

	•						- - 4: -::						
			Sample ID		B-7 (1-2')	B-7 (3-4')	B-8 (1-2')	B-8 (3-4')	B-9 (8-10')	B-10 (7-9')	B-11 (10')	B-12 (1-2')	B-12 (4-5')
				1120383-06				25C0670-05			25C0670-08		
				12/10/2021	3/24/2025	3/24/2025	3/24/2025	3/24/2025	3/24/2025	3/24/2025	3/24/2025	3/24/2025	3/24/2025
.		epth Collec	_ ` /	3-5	1-2	3-4	1-2	3-4	8-10	7-9	10	1-2	4-5
Analyte	GB-PMC		R-DEC										
1,1,1-Trichloroethane	40,000	1,000,000	500,000										
1,1,2,2-Tetrachloroethane	100	29,000	3,100										
1,1,2-Trichloroethane	1,000	100,000	11,000										
1,1-Dichloroethane	14,000	1,000,000	500,000										
1,1-Dichloroethene	1,400	9,500	1,000						-				
1,1-Dichloropropene	NE	NE	NE										
1,2,3-Trichlorobenzene	NE	NE	NE					/					
1,2,3-Trichloropropane	NE	NE	NE										
1,2,4-Trichlorobenzene	14,000	200,000	21,000										
1,2,4-Trimethylbenzene	28,000	1,000,000	500,000										
1,2-Dibromo-3-chloropropane	40	820	90										
1,2-Dibromoethane	100	67	7										
1,2-Dichlorobenzene	3,100	1,000,000	500,000										
1,2-Dichloroethane	200	63,000	6,700			-							
1,2-Dichloropropane	1,000	84,000	9,000										
1,3,5-Trimethylbenzene	28,000	1,000,000	500,000				1	-					
1,3-Dichlorobenzene	120,000	1,000,000	500,000										
1,3-Dichloropropane	NA	NA	NA				<i> </i>						
1,4-Dichlorobenzene	15,000	240,000	26,000										
2,2-Dichloropropane	NE	NE	NE										
2-Butanone (MEK)	80,000	1,000,000	500,000										
2-Chlorotoluene	28,000	1,000,000	500,000										
2-Hexanone	7,000	1,000,000	340,000										
4-Chlorotoluene	28,000	1,000,000	500,000										
4-Isopropyltoluene	5,000	1,000,000	500,000										
Acetone	140,000	1,000,000	500,000										
Acrylonitrile	100	11,000	1,100	-4									
Benzene	200	200,000	21,000			/							
Bromobenzene	NE	NE	NE										
Bromochloromethane	NA	NA	NA										
Bromodichloromethane	210	170,000	18,000										
Bromoform	800	720,000	78,000										
Bromomethane	700	1,000,000	34,000										
Carbon disulfide	8,000	1,000,000	500,000										
Carbon tetrachloride	1,000	44,000	4,700										
Chlorobenzene	20,000	1,000,000	500,000										
Chloroethane	1,500	1,000,000	130,000										
Chloroform	1,200	940,000	100,000										
Chloromethane	3,600	1,000,000	180,000										
cis-1,2-Dichloroethene	14,000	1,000,000	500,000										
cis-1,3-Dichloropropene	NE	NE	NE										
Dibromochloromethane	100	68,000	7,300										
Dibromomethane	NE	NE	NE										
Dichlorodifluoromethane	70,000	1,000,000	500,000										
Ethylbenzene	10,100	1,000,000	500,000										
Hexachlorobutadiene	1,500	1,200,000	130,000										
i ionacinorobatadiciic	1,000	1,200,000	100,000								-		_

TABLE 1
SOIL DATA SUMMARY TABLE
PROJECT NAME
226 RUBBER AVENUE, NAUGATUCK, CONNECTICUT

	1		Sample ID	D C (2 EI)	D 7 (4 21)	D 7 (2 41)	D 0 (4 2l)	D 0 (2 41)	D 0 (0 401)	D 40 (7 01)	D 44 (401)	D 40 (4 01)	D 40 (4 EI)
		l ob		- (/	B-7 (1-2') 25C0670-02	B-7 (3-4')	B-8 (1-2') 25C0670-04	B-8 (3-4')	B-9 (8-10') 25C0670-06	B-10 (7-9')	B-11 (10')	B-12 (1-2') 25C0670-09	B-12 (4-5')
				12/10/2021	3/24/2025	3/24/2025	3/24/2025	3/24/2025	3/24/2025	3/24/2025	3/24/2025	3/24/2025	3/24/2025
		Depth Collec		3-5	1-2	3-4	1-2	3-4	8-10	7-9	10	1-2	3/24/2025 4-5
Analyte	GB-PMC		R-DEC	3-3	1-2	3-4	1-2	3-4	0-10	7-9	10	1-2	4-5
•	5,000	1,000,000	500,000										
isopropylbenzene													
m+p Xylenes Methyl isobutyl ketone	19,500 14,000	1,000,000 1,000,000	<i>500,000</i> 500,000										
methylene chloride	1,000	760,000	82,000										
Methyl-t-Butyl Ether (MTBE)	20,000	1,000,000	500,000										
Naphthalene	56,000	2,500,000	1,000,000										
n-Butylbenzene	70,000	1,000,000	500,000										
n-Propylbenzene	10,000	1,000,000	500,000										
o-Xylene	19,500												
sec-Butylbenzene	70,000	1,000,000	500,000										
×		1,000,000	500,000					-					
Styrene tert-Butylbenzene	20,000	1,000,000	500,000										
·	70,000 1,000	<i>1,000,000</i> 110,000	500,000 12,000					-					
Tetrachloroethene Tetrachydrofuran	1,000		12,000										
Tetrahydrofuran Toluene	800 67,000	570,000 1,000,000	<i>61,000</i> 500,000										
trans-1,2-Dichloroethene	20,000												
trans-1,3-Dichloropropene	20,000 NE	1,000,000 NE	500,000 NE										
trans-1,4-Dichloro-2-Butene	NE NE	NE NE	NE NE										
,	1,000		56,000										
Trichloroethene Trichlorofluoromethane		520,000											
Trichlorotrifluoroethane	200,000	1,000,000	500,000										
	400	1,000,000	500,000 320										
Vinyl chloride SVOCs by EPA Method 8270D (3,000	320										
1,2,4,5-Tetrachlorobenzene	1,000	610,000	20,000						ı				
1,2-Diphenylhydrazine	1,000	7,200	770										
2,3,4,6-Tetrachlorophenol	NE	NE NE	NE										
2,4,5-Trichlorophenol	140,000	2,500,000	1,000,000										
2,4,6-Trichlorophenol	1,000	520,000	56,000										
2,4-Dichlorophenol	4,000	2,500,000	200,000	-									
2,4-Dimethylphenol	28,000	2,500,000	1,000,000										
2,4-Dinitrophenol	2,800	2,500,000	140,000										
2,4-Dinitrotoluene	1,000	8,400	900										
2,6-Dichlorophenol	NE	NE	NE										
2,6-Dinitrotoluene	1,000	8,400	900										
2-Chloronaphthalene	110,000	1,000,000	500,000										
2-Chlorophenol	7,200	2,500,000											
2-Methyl Naphthalene	5,600	1,000,000	270,000	<320	<210	<220	<210	<220				<210	<230
2-Methyl Phenol	28,000	2,500,000	1,000,000	<320	<210		<210	<2ZU				<210	<230
2-Nitroaniline	2,000	290,000	31,000										
2-Nitrophenol	146,000	1,000,000	500,000										
3,3-Dichlorobenzidine	1,000	13,000	1,400										
3+4 Methyl Phenol	24,000	2,500,000	1,000,000										
3-Nitroaniline	2,000	290,000	31,000										
	2,000	610,000	20,000										
4,6-Dinitro-2-methylphenol													
4-Bromophenyl-phenylether	82,000	1,000,000											
4-Chloro-3-methylphenol	140,000	2,500,000	1,000,000										

TABLE 1
SOIL DATA SUMMARY TABLE
PROJECT NAME
226 RUBBER AVENUE, NAUGATUCK, CONNECTICUT

			Sample ID	B-6 (3-5')	B-7 (1-2')	B-7 (3-4')	B-8 (1-2')	B-8 (3-4')	B-9 (8-10')	B-10 (7-9')	B-11 (10')	B-12 (1-2')	B-12 (4-5')
		Lab	Sample ID	1120383-06	25C0670-02	25C0670-03	25C0670-04	25C0670-05		25C0670-07	25C0670-08	25C0670-09	
		Dat	e Collected	12/10/2021	3/24/2025	3/24/2025	3/24/2025	3/24/2025	3/24/2025	3/24/2025	3/24/2025	3/24/2025	3/24/2025
		Depth Collec	ted (ft bgs)	3-5	1-2	3-4	1-2	3-4	8-10	7-9	10	1-2	4-5
Analyte	GB-PMC	I/C-DEC	R-DEC										
4-Chloroaniline	1,000	29,000	3,100										
4-Chlorophenyl-phenylether	82,000	1,000,000	500,000										
4-Nitroaniline	2,000	290,000	31,000										
4-Nitrophenol	NE	NE	NE										
Acenaphthene	84,000	2,500,000	1,000,000	<320	<110	<110	<110	<110				<110	<110
Acenaphthylene	84,000	2,500,000	1,000,000	<320	<110	<110	<110	<110				<110	150
Aniline	1,200	1,000,000	110,000					/					
Anthracene	400,000	2,500,000	1,000,000	<320	<110	<110	<110	<110				<110	140
Benzo(a)Anthracene	1,000	7,800	1,000	410	<110	<110	<110	<110				<110	450
Benzo(a)pyrene	1,000	1,000	1,000	440	<110	<110	<110	<110				<110	470
Benzo(b)fluoranthene	1,000	7,800	1,000	480	<110	<110	<110	<110				<110	700
Benzo(g,h,i)perylene	1,000	78,000	8,400	<320	<110	<110	<110	<110				<110	350
Benzo(k)fluoranthene	1,000	78,000	8,400	<320	<110	<110	<110	<110				<110	160
Benzoic acid	200,000	2,500,000	1,000,000			į							
Benzyl alcohol	ΝE	NE	NE										
bis(2-Chloroethoxy)methane	4,200	2,500,000	200,000										
Bis(2-chloroethyl)ether	2,400	5,200	1,000										
Bis(2-chloroisopropyl)ether	2,400	82,000	8,800				<i>[</i>						
Bis(2-ethylhexyl)phthalate	11,000	410,000	44,000			-							
Butylbenzylphthalate	200,000	2,500,000	1,000,000										
Carbazole	1,000	290,000	31,000										
Chrysene	1,000	780,000	84,000	410	<110	<110	<110	<110				<110	540
Dibenz[a,h]anthracene	1,000	1,000	1,000	<320	<110	<110	<110	<110				<110	<110
Dibenzofuran	1,400	1,000,000	68,000										
Diethylphthalate	200,000	2,500,000	1,000,000										
Dimethylphthalate	200,000	2,500,000											
Di-n-butylphthalate	140,000	2,500,000		-4									
Di-n-octylphthalate	20,000	2,500,000				/							
Fluoranthene	56,000	2,500,000		850	<110	<110	<110	<110				<110	1,000
Fluorene	56,000	2,500,000		<320	<110	<110	<110	<110				<110	<110
Hexachlorobenzene	1,000	3,600	1,000										
Hexachlorocyclopentadiene	8,400	1,000,000											
Hexachloroethane	1,000	410,000	44,000										
Indeno[1,2,3-cd]pyrene	1,000	7,800	1,000	<320	<110	<110	<110	<110				<110	300
Isophorone	7,400	2,500,000	640,000										
Nitrobenzene	1,000	41,000	4,000										
n-Nitroso-dimethylamine	1,000	360	200										
n-Nitroso-di-n-propylamine	1,000	820	200										
n-Nitrosodiphenylamine	1,400	1,200,000	130,000										
Pentachloronitrobenzene	1,400	2,000,000	68,000										
Pentachlorophenol	1,000	48,000	5,100										
Phenanthrene	40,000	2,500,000		380	<110	<110	<110	<110				<110	450
Phenol	800,000	2,500,000											
Pyrene	40,000	2,500,000		810	<110	<110	<110	<110				<110	930
Pyridine	1,000	610,000	20,000									7.10	
1,3-Dichlorobenzene	120,000	1,000,000											
.,. 2.0	0,000	1,000,000	000,000				1						

TABLE 1
SOIL DATA SUMMARY TABLE
PROJECT NAME
226 RUBBER AVENUE, NAUGATUCK, CONNECTICUT

Sample ID			B-6 (3-5')	B-7 (1-2')	B-7 (3-4')	B-8 (1-2')	B-8 (3-4')	B-9 (8-10')	B-10 (7-9')	B-11 (10')	B-12 (1-2')	B-12 (4-5')
	Lab	Sample ID	1120383-06	25C0670-02	25C0670-03	25C0670-04	25C0670-05	25C0670-06	25C0670-07	25C0670-08	25C0670-09	25C0670-10
Date Collected 17		12/10/2021	3/24/2025	3/24/2025	3/24/2025	3/24/2025	3/24/2025	3/24/2025	3/24/2025	3/24/2025	3/24/2025	
D	epth Collec	ted (ft bgs)	3-5	1-2	3-4	1-2	3-4	8-10	7-9	10	1-2	4-5
GB-PMC	I/C-DEC	R-DEC										
15,000	240,000	26,000										
3,100	1,000,000	500,000				/						
14,000	200,000	21,000				-4						
1,500	1,200,000	130,000										
56,000	2,500,000	1,000,000	<320	<110	<110	<110	<110	-			<110	<110
NA	NA	NA		95	89	93	90	90	90	74	94	88
	GB-PMC 15,000 3,100 14,000 1,500 56,000	Date Depth Collect GB-PMC I/C-DEC 15,000 240,000 3,100 1,000,000 14,000 200,000 1,500 1,200,000 56,000 2,500,000	Lab Sample ID Date Collected Depth Collected (ft bgs) GB-PMC I/C-DEC R-DEC 15,000 240,000 26,000 3,100 1,000,000 500,000 14,000 200,000 21,000 1,500 1,200,000 130,000 56,000 2,500,000 1,000,000	Lab Sample ID 1120383-06 Date Collected 12/10/2021 Depth Collected (ft bgs) 3-5 GB-PMC I/C-DEC R-DEC 15,000 240,000 26,000 3,100 1,000,000 500,000 14,000 200,000 21,000 1,500 1,200,000 130,000 56,000 2,500,000 1,000,000 <320	Lab Sample ID 1120383-06 25C0670-02 Date Collected 12/10/2021 3/24/2025 Depth Collected (ft bgs) 3-5 1-2 GB-PMC I/C-DEC R-DEC 15,000 240,000 26,000 3,100 1,000,000 500,000 14,000 200,000 21,000 1,500 1,200,000 130,000 56,000 2,500,000 1,000,000 <320	Lab Sample ID 1120383-06 25C0670-02 25C0670-03 Date Collected 12/10/2021 3/24/2025 3/24/2025 Depth Collected (ft bgs) 3-5 1-2 3-4 GB-PMC I/C-DEC R-DEC 15,000 240,000 26,000	Lab Sample ID 1120383-06 25C0670-02 25C0670-03 25C0670-04 Date Collected 12/10/2021 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3-4 1-2 GB-PMC I/C-DEC R-DEC 15,000 240,000 26,000 <	Lab Sample ID 1120383-06 25C0670-02 25C0670-03 25C0670-04 25C0670-04 25C0670-05 Depth Collected (ft bgs) 3-5 1-2 3-4 1-2 3-4 GB-PMC I/C-DEC R-DEC 15,000 240,000 26,000 <	Lab Sample ID 1120383-06 25C0670-02 25C0670-04 25C0670-05 25C0670-06 25C0670-06 25C0670-06 25C0670-06 25C0670-06 25C0670-05 25C0670-06 25C0670-06 25C0670-06 3/24/2025 3/24/	Lab Sample ID 1120383-06 25C0670-02 25C0670-04 25C0670-05 25C0670-06 25C0670-06 25C0670-05 25C0670-05 25C0670-05 25C0670-05 25C0670-05 25C0670-06 25C0670-05 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 <t< td=""><td>Lab Sample ID 1120383-06 25C0670-02 25C0670-03 25C0670-04 25C0670-05 25C0670-06 25C0670-07 25C0670-08 Date Collected 12/10/2021 3/24/2025</td><td>Lab Sample ID 1120383-06 25C0670-02 25C0670-03 25C0670-06 25C0670-06 25C0670-07 25C0670-08 25C0670-09 25C0670-06 25C0670-07 25C0670-08 25C0670-09 25C0670-09 25C0670-06 25C0670-07 25C0670-08 25C0670-09 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 <t< td=""></t<></td></t<>	Lab Sample ID 1120383-06 25C0670-02 25C0670-03 25C0670-04 25C0670-05 25C0670-06 25C0670-07 25C0670-08 Date Collected 12/10/2021 3/24/2025	Lab Sample ID 1120383-06 25C0670-02 25C0670-03 25C0670-06 25C0670-06 25C0670-07 25C0670-08 25C0670-09 25C0670-06 25C0670-07 25C0670-08 25C0670-09 25C0670-09 25C0670-06 25C0670-07 25C0670-08 25C0670-09 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 3/24/2025 <t< td=""></t<>

Notes:

< = Compound not detected above the laboratory reporting limit shown.

---- = Not analyzed

NE = No Standard Established

NA = Standard Not Applicable

μg/kg = micrograms per kilogram

mg/kg = milligrams per kilogram

ft = feet

GA PMC = GA Pollutant Mobility Criteria

I/C DEC= Industrial/Commercial Direct Exposure Criteria.

Res DEC = Residential Direct Exposure Criteria.

Additional Polluting Substances values

CT ETPH = Connecticut Extractable Petroleum Hydrocarbons

PAHs = Polycyclic Aromatic Hydrocarbons

VOCs = Volatile Organic Compounds

SVOCs = Semi-Volatile Organic Compounds

PCBs = Polychlorinated Biphenyls

Bold indicates a detection above laboratory reporting limits

Highlighted results indicate an exceedance of numerical criteria.

TABLE 2
GROUNDWATER DATA SUMMARY TABLE
226 RUBBER AVENUE, NAUGATUCK, CONNECTICUT

			Sample ID	MW-1	MW-2	MV	V-3	MW-4	MW-5	MW-6
		Lab	Sample ID	1090298-01	1090298-02	1090298-03	25D0105-01	25D0105-02	25D0105-03	25D0105-04
		Date	e Collected	9/09/2021	9/09/2021	9/09/2021	4/02/2025	4/02/2025	4/02/2025	4/02/2025
Analyte	SWPC	I/C-GWVC	R-GWVC							
CT ETPH (mg/L)										
ETPH	0.25	0.25	0.25	< 0.10	<0.10	4.2	7.4	< 0.10	<0.10	< 0.10
Metals by EPA Method 6010D & 7471										
Antimony	86	NE	NE	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Arsenic	0.004	NE	NE	< 0.0040	0.007	0.016	<0.0040	< 0.0040	< 0.0040	< 0.0040
Barium	2	NE	NE	0.08	0.10	0.34	0.350	0.091	0.170	0.073
Beryllium	0.004	NE	NE	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040
Cadmium	0.006	NE	NE	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Chromium	NE	NE	NE	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Copper	0.048	NE	NE	<0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040
Lead	0.013	NE	NE	< 0.013	< 0.013	0.039	0.017	< 0.013	< 0.013	< 0.013
Mercury	0.0004	NE	NE	<0.00020	<0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020
Nickel	0.88	NE	NE	<0.059	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050
Selenium	0.05	NE	NE	<0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Silver	0.012	NE	NE	< 0.012	< 0.912	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012
Thallium	0.063	NE	NE	< 0.050	≤0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Vanadium	0.27	NE	NE	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Zinc	0.123	NE	NE	<0.020	<0.020	0.11	0.075	0.025	< 0.020	0.031
PCBs by EPA Method 8082A (ug/L)						<u> </u>				
PCB-1016	0.5	3.6	0.5	< 0.10	< 0.10	< 0.10				
PCB-1221	0.5	3.6	0.5	<0.10	< 0.10	< 0.10				
PCB-1232	0.5	3.6	0.5	< 0.10	<0.10	< 0.10				
PCB-1242	0.5	3.6	0.5	< 0.10	< 0.10	< 0.10				
PCB-1248	0.5	3.6	0.5	< 0.10	<0.10	< 0.10				
PCB-1254	0.5	3.6	0.5	< 0.10	< 0.10	< 0.10				
PCB-1260	0.5	3.6	0.5	< 0.10	< 0.10	< 0.10				
PCB-1262	0.5	3.6	0.5	<0.10	< 0.10	< 0.10				
PCB-1268	0.5	3.6	0.5	< 0.10	< 0.10	< 0.10				
VOCs by EPA Method 8260D (ug/L)			•				•			
Dichlorodifluoromethane	10,000	720	53	<10	<10	<200	<10	<10	<10	<10
Chloromethane	10,000	1,800	130	<2.7	<2.7	<54	<2.7	<2.7	<2.7	<2.7
Vinyl chloride	15,750	52	1.6	<1.6	<1.6	<32	<1.6	<1.6	<1.6	<1.6
Bromomethane	160	1,100	83	<1.0	<1.0	<20	<1.0	<1.0	<1.0	<1.0
Chloroethane	10,000	360	22	<5.0	<5.0	<100	< 5.0	<5.0	<5.0	< 5.0
Trichlorofluoromethane	10,000	4,300	1,300	<25	<25	< 500	<25	<25	<25	<25
Acetone	10,000	50,000	50,000	<50	<50	<1000	<50	<50	<50	<50
Acrylonitrile	20	50,000	4,027	< 0.50	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50
Trichlorotrifluoroethane	320	810	330	<25	<25	<500	<25	<25	<25	<25
1,1-Dichloroethene	96	920	190	<1.0	<1.0	<20	<1.0	<1.0	<1.0	<1.0
t-butanol	NA	NA	NA				<25	<25	<25	<25
		•								

TABLE 2
GROUNDWATER DATA SUMMARY TABLE
226 RUBBER AVENUE, NAUGATUCK, CONNECTICUT

			Sample ID	MW-1	MW-2	My	V-3	MW-4	MW-5	MW-6
		Lab	Sample ID		1090298-02		25D0105-01	25D0105-02		25D0105-04
			e Collected		9/09/2021	9/09/2021	4/02/2025	4/02/2025	4/02/2025	4/02/2025
Analyte	SWPC	I/C-GWVC	R-GWVC							
methylene chloride	48,000	2,200	160	< 5.0	< 5.0	×100	< 5.0	< 5.0	<5.0	< 5.0
Carbon disulfide	150	5,200	2,100	<1.0	<1.0	<20	<1.0	<1.0	<1.0	<1.0
Methyl-t-Butyl Ether (MTBE)	10,000	50,000	50,000	< 5.0	< 5.0	<100	<5.0	<5.0	<5.0	< 5.0
trans-1,2-Dichloroethene	10,000	6,673	536	<1.0	<1.0	<20	<1.0	<1.0	<1.0	<1.0
Di-isopropyl ether	NA	NA	NA				<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethane	4,100	4,100	3,000	<1.0	<1.0	<20	<1.0	<1.0	<1.0	<1.0
t-butyl ethyl ether	NA	NA	NA			-4	<1.0	<1.0	<1.0	<1.0
2-Butanone (MEK)	10,000	50,000	50,000	<25	<25	<500	<25	<25	<25	<25
2,2-Dichloropropane	NE	NE	NE	<1.0	<1.0	<20	<1.0	<1.0	<1.0	<1.0
cis-1,2-Dichloroethene	6,200	11,472	928	<1.0	<1.0	<20	<1.0	<1.0	<1.0	<1.0
Bromochloromethane	NA	NA	NA	<1.0	<1.0	<20	<1.0	<1.0	<1.0	<1.0
Chloroform	14,100	62	26	<1.0	<1.0	<20	<1.0	<1.0	<1.0	<1.0
Tetrahydrofuran	9,600	3,700	250	<4.0	<4.0	<80	<4.0	<4.0	<4.0	<4.0
1,1,1-Trichloroethane	62,000	16,000	6,500	<1.0	<1.0	<20	<1.0	<1.0	<1.0	<1.0
tert-amyl methyl ether	NA	NA	NA			-	<5.0	<5.0	<5.0	<5.0
Carbon tetrachloride	132	14	5.3	<1.0	<1.0	<20	<1.0	<1.0	<1.0	<1.0
1,1-Dichloropropene	NE	NE	NE	<1.0	<1.0	<20	<1.0	<1.0	<1.0	<1.0
Benzene	710	530	215	<1.0	<1.0	1,100	1,500	<1.0	<1.0	<1.0
1,2-Dichloroethane	2,970	68	6.5	<1.0	<1.0	<20	<1.0	<1.0	<1.0	<1.0
Trichloroethene	2,340	67	27	<1.0	<1.0	<20	<1.0	<1.0	<1.0	<1.0
1,2-Dichloropropane	150	58	7.4	<1.0	<1.0	<20	<1.0	<1.0	<1.0	<1.0
Dibromomethane	NE	NE	NE	<1.0	<1.0	<20	<1.0	<1.0	<1.0	<1.0
Bromodichloromethane	510	35	1.1	<0.50	<0.50	<10	< 0.50	< 0.50	< 0.50	<0.50
Methyl isobutyl ketone	10,000	50,000	13,000	<25	<25	<500	<25	<25	<25	<25
cis-1,3-Dichloropropene	17	360	11	< 0.50	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50
Toluene	4,000,000	50,000	23,500	<1.0	<1.0	<20	13	<1.0	<1.0	<1.0
trans-1,3-Dichloropropene	10,000	360	11	<0.50	< 0.50	<10	<0.50	<0.50	<0.50	<0.50
2-Hexanone	10,000	94,000	7,600	<25	<25	<500	<25	<25	<25	<25
1,1,2-Trichloroethane	1,260	2,900	220	<1.0	<1.0	<20	<1.0	<1.0	<1.0	<1.0
Tetrachloroethene	88	810	340	<1.0	<1.0	<20	<1.0	<1.0	<1.0	<1.0
1,3-Dichloropropane	34,000	25	6	<0.50	<0.50	<10	<0.50	<0.50	<0.50	<0.50
Dibromochloromethane	1,020	NE NE	NE	< 0.50	< 0.50	<10	<0.50	<0.50	< 0.50	<0.50
1,2-Dibromoethane	NA	11	NA	< 0.50	< 0.50	<10	<0.50	<0.50	<0.50	<0.50
trans-1,4-Dichloro-2-Butene	NE NE	NE	NE	<10	<10	<200	<10	<10	<10	<10
	420,000	23,000	1,800	<1.0	<1.0	<20	3.8	<1.0	<1.0	<1.0
Chlorobenzene 1,1,1,2-Tetrachloroethane	330	64	2	<1.0	<1.0	<20	3.8 <1.0	<1.0	<1.0	<1.0
Ethylbenzene	580,000	50,000	50,000	<1.0	<1.0	170	240	<1.0	<1.0	<1.0
m+p Xylenes	270	50,000	21,300	<1.0	<1.0	2,600	4,000	<1.0	<1.0	<1.0
o-Xylene	270	50,000		<1.0		·	·	<1.0	<1.0	
•		·	21,300		<1.0	600	840			<1.0
Styrene	320	42,000	3,100	<1.0	<1.0	<20	<1.0	<1.0	<1.0	<1.0
Bromoform	10,800	2,300	75	<1.0	<1.0	<20	<1.0	<1.0	<1.0	<1.0
isopropylbenzene	210	2,200	900	<1.0	<1.0	<20	20	<1.0	<1.0	<1.0
1,1,2,2-Tetrachloroethane	110 NE	54	1.8	< 0.50	< 0.50	<10	< 0.50	<0.50	< 0.50	< 0.50
Bromobenzene	NE	NE	NE	<1.0	<1.0	<20	<1.0	<1.0	<1.0	<1.0

TABLE 2
GROUNDWATER DATA SUMMARY TABLE
226 RUBBER AVENUE, NAUGATUCK, CONNECTICUT

			Sample ID	MW-1	MW-2	My	V-3	MW-4	MW-5	MW-6
		Lab	Sample ID		1090298-02	1090298-03	25D0105-01	25D0105-02		25D0105-04
			e Collected		9/09/2021	9/09/2021	4/02/2025	4/02/2025	4/02/2025	4/02/2025
Analyte	SWPC	I/C-GWVC	R-GWVC							
1,2,3-Trichloropropane	NE	NE	NE	<1.0	<1.0	<20	<1.0	<1.0	<1.0	<1.0
n-Propylbenzene	10,000	2,900	1,200	<1.0	<1.0	<20	1.3	<1.0	<1.0	<1.0
2-Chlorotoluene	10,000	28,300	2,100	<1.0	<1.0	<20	<1.0	<1.0	<1.0	<1.0
4-Chlorotoluene	10,000	25,200	1,900	<1.0	<1.0	<20	<1.0	<1.0	<1.0	<1.0
1,3,5-Trimethylbenzene	260	10,000	730	<1.0	<1.0	<20	17	<1.0	<1.0	<1.0
tert-Butylbenzene	10,000	25,300	1,900	<1.0	<1.0	<20	<1.0	<1.0	<1.0	<1.0
1,2,4-Trimethylbenzene	150	12,800	940	<1.0	<1.0	<20	21	<1.0	<1.0	<1.0
sec-Butylbenzene	10,000	20,100	1,500	<1.0	<1.0	<20	<1.0	<1.0	<1.0	<1.0
1,3-Dichlorobenzene	26,000	50,000	4,300	<1.0	<1.0	<20	<1.0	<1.0	<1.0	<1.0
4-Isopropyltoluene	200	2,100	870	<1.0	<1.0	<20	<1.0	<1.0	<1.0	<1.0
1,4-Dichlorobenzene	26,000	50,000	50,000	<1.0	<1.0	<20	<1.0	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	170,000	50,000	5,100	<1.0	<1.0	<20	<1.0	<1.0	<1.0	<1.0
n-Butylbenzene	10,000	21,800	1,600	<1.0	<1.0	<20	<1.0	<1.0	<1.0	<1.0
1,2-Dibromo-3-chloropropane	1	NE	NE	<1.0	<1.0	<20	<1.0	<1.0	<1.0	<1.0
1,2,4-Trichlorobenzene	150	660	12	<1.0	<1.0	<20	<1.0	<1.0	<1.0	<1.0
Hexachlorobutadiene	10	NE	NE	< 0.45	< 0.45	<9.0	< 0.45	< 0.45	< 0.45	< 0.45
Naphthalene	210	3,099	259	<1.0	<1.0	<20	2	<1.0	<1.0	<1.0
1,2,3-Trichlorobenzene	NE	NE	NE	<1.0	<1.0	<20	<1.0	<1.0	<1.0	<1.0
1,4-Dioxane	NA	NA	NA				<100	<100	<100	<100
Ethyl ether	NA	NA	NA				<25	<25	<25	<25
SVOCs by EPA Method 8270E (ug/L)								-	I	
1,2,4,5-Tetrachlorobenzene	11	NE	NE	<4.0	<4.0	<4.0				
1,2-Diphenylhydrazine	6	NE	NE	<4.0	<4.0	<4.0				
2,3,4,6-Tetrachlorophenol	NÉ	NE	NE	<4.0	<4.0	<4.0				
2,4,5-Trichlorophenol	28	NE	NE	<4.0	<4.0	<4.0				
2,4,6-Trichlorophenol	49	NÉ	NE	<4.0	<4.0	<4.0				
2,4-Dichlorophenol	15,800	NE	NE	<4.0	<4.0	<4.0				
2,4-Dimethylphenol	150	NE	NE	<4.0	<4.0	<4.0				
2,4-Dinitrophenol	710	NE	NE	<4.0	<4.0	<4.0				
2,4-Dinitrotoluene	100	NE	NE	<4.0	<4.0	<4.0				
2,6-Dichlorophenol	NE	NE	NE	<4.0	<4.0	<4.0				
2,6-Dinitrotoluene	46	NE	NE	<4.0	<4.0	<4.0				
2-Chloronaphthalene	10,000	50,000	27,300	<4.0	<4.0	<4.0				
2-Chlorophenol	320	50,000	34,660	<4.0	<4.0	<4.0				
2-Methyl Naphthalene	62	13,100	1,000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-Methyl Phenol	670	NE	NE	<4.0	<4.0	<4.0			==	
2-Nitroaniline	210	NE	NE	<4.0	<4.0	<4.0				
2-Nitrophenol	560	NE	NE	<4.0	<4.0	<4.0				
3,3-Dichlorobenzidine	5	NE	NE	<4.0	<4.0	<4.0				
3+4 Methyl Phenol	620 / 560	NE	NE	<4.0	<4.0	<4.0				
3-Nitroaniline	70	NE	NE	<4.0	<4.0	<4.0				
4,6-Dinitro-2-methylphenol	10	NE	NE	<4.0	<4.0	<4.0				
4-Bromophenyl-phenylether	NE	NE	NE	<4.0	<4.0	<4.0				
4-Chloro-3-methylphenol	73	NE	NE	<4.0	<4.0	<4.0				
. Sinois s monty priorisi	, 0	. 1			7 1.0	7 7.0	_			

TABLE 2
GROUNDWATER DATA SUMMARY TABLE
226 RUBBER AVENUE, NAUGATUCK, CONNECTICUT

			Sample ID	MW-1	MW-2	My	V-3	MW-4	MW-5	MW-6
		Lab	Sample ID		1090298-02		25D0105-01	25D0105-02		25D0105-04
			e Collected		9/09/2021	9/09/2021	4/02/2025	4/02/2025	4/02/2025	4/02/2025
	SWPC	I/C-GWVC	R-GWVC	5,00,00	0.00,00					
Analyte	SWFC	I/C-GWVC	K-GWVC							
4-Chloroaniline	9.9	NE	NE	<4.0	<4.0	<4.0				
4-Chlorophenyl-phenylether	NE	NE	NE	<4.0	<4.0	<4.0				
4-Nitroaniline	1,200	NE	NE	<4.0	<4.0	<4.0				
4-Nitrophenol	NE	NE	NE	<4.0	<4.0	<4.0	-			
Acenaphthene	150	50,000	30,500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Acenaphthylene	0.3	50,000	48,935	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Aniline	41	NE	NE	<4.0	<4.0	<4.0				
Anthracene	1,100,000	50,000	50,000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(a)Anthracene	0.3	NE	NE	< 0.060	< 0.060	< 0.060	< 0.060	< 0.060	< 0.060	< 0.060
Benzo(a)pyrene	0.3	NE	NE	<0.20	< 0.20	<0.20	< 0.20	< 0.20	< 0.20	< 0.20
Benzo(b)fluoranthene	0.3	NE	NE	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080
Benzo(g,h,i)perylene	150	NE	NE	<0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40
Benzo(k)fluoranthene	0.3	NE	NE	<0.30	< 0.30	< 0.30	<0.30	< 0.30	< 0.30	< 0.30
Benzoic acid	9,000	NE	NE	<4.0	<4.0	<4.0				
Benzyl alcohol	NE	NE	NE	<4.0	<4.0	<4.0				
bis(2-Chloroethoxy)methane	10,000	NE	NE	<4.0	<4.0	<4.0				
Bis(2-chloroethyl)ether	42	51	5	<4.0	<4.0	<4.0				
Bis(2-chloroisopropyl)ether	3,400,000	1,042	94	<4.0	<4.0	<4.0				
Bis(2-ethylhexyl)phthalate	59	NE	NE	<2.0	<2.0	<2.0				
Butylbenzylphthalate	230	NE	NE	<4.0	<4.0	<4.0				
Carbazole	53	NE	NE	<1.0	<1.0	<1.0				
Chrysene	0.54	NE	NE	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Dibenz[a,h]anthracene	0.3	NE	NE	< 0.10	<0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenzofuran	40	5,800	460	<4.0	₹4.0	<4.0				
Diethylphthalate	2,200	NE	NE	<4.0	<4.0	<4.0				
Dimethylphthalate	10,000	ŊÉ	NE	<4.0	<4.0	<4.0				
Di-n-butylphthalate	120,000	NE	NE	<4.0	<4.0	<4.0				
Di-n-octylphthalate	10,000	NE	NE	<4.0	<4.0	<4.0				
Fluoranthene	3,700	NE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Fluorene	140,000	50,000	37,642	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Hexachlorobenzene	0.077	NE	NE	< 0.077	< 0.077	< 0.077				
Hexachlorocyclopentadiene	0.7	NE	NE	<4.0	<4.0	<4.0				
Hexachloroethane	89	NE	NE	<3.0	<3.0	<3.0				
Indeno[1,2,3-cd]pyrene	0.5	NE	NE	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Isophorone	9,200	NE	NE	<4.0	<4.0	<4.0				
Nitrobenzene	2,300	750	51	<4.0	<4.0	<4.0				
n-Nitroso-dimethylamine	90	NE	NE	<4.0	<4.0	<4.0				
n-Nitroso-di-n-propylamine	15	NE	NE	<4.0	<4.0	<4.0				
n-Nitrosodiphenylamine	180	NE	NE	<4.0	<4.0	<4.0				
Pentachloronitrobenzene	25	NE	NE	<4.0	<4.0	<4.0				
Pentachlorophenol	30	NE	NE	<1.0	<1.0	<1.0				
Phenanthrene	14	50,000.000	50,000	< 0.077	< 0.077	< 0.077	0.27	< 0.077	< 0.077	< 0.077
Phenol	92,000,000	NE	NE	<4.0	<4.0	<4.0			==	
Pyrene	110,000	NE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1 310110	1 10,000	1 * L	114	~1.0	~1.0	\ I.U	< 1.U	~1.0	~1.0	\ I.U

TABLE 2
GROUNDWATER DATA SUMMARY TABLE
226 RUBBER AVENUE, NAUGATUCK, CONNECTICUT

			Sample ID	MW-1	MW-2	MV	V-3	MW-4	MW-5	MW-6
		Lab	Sample ID	1090298-01	1090298-02	1090298-03	25D0105-01	25D0105-02	25D0105-03	25D0105-04
		Date	e Collected	9/09/2021	9/09/2021	9/09/2021	4/02/2025	4/02/2025	4/02/2025	4/02/2025
Analyte	SWPC	I/C-GWVC	R-GWVC							
Pyridine	260	23,500	1,900	<4.0	<4.0	<4.0				
1,3-Dichlorobenzene	26,000	50,000	24,200	<4.0	<4.0	<4.0				
1,4-Dichlorobenzene	26,000	50,000	50,000	<4.0	<4.0	<4.0				
1,2-Dichlorobenzene	170,000	50,000	30,500	<4.0	<4.0	<4.0	<u>-</u>			
1,2,4-Trichlorobenzene	9.6	660	12	<4.0	<4.0	<4.0				
Hexachlorobutadiene	10	NE	NE	<4.0	<4.0	<4.0				
Naphthalene	210	3,099	259	<1.0	<1.0	<1.0	1.3	<1.0	<1.0	<1.0
1,4-Dioxane by Modified EPA Method	8260B (ug/L	.)								
1,4-Dioxane	NA	NA	NA	<2.5	<2.5	<50	<2.5	<2.5	<2.5	<2.5

Notes:

< = Compound not detected above the laboratory reporting limit shown.

---- = Not analyzed

Ne = No Standard Established

NA = Standard Not Applicable

μg/L = micrograms per liter

mg/L = milligrams per liter

GWPC = Groundwater Protection Criteria

SWPC = Surface Water Protection Criteria

I/C-GWVC = Industrial/Commercial Groundwater Volatilization Criteria

Additional Polluting Substances values

CT ETPH = Connecticut Extractable Petroleum Hydrocarbons

PAHs = Polycyclic Aromatic Hydrocarbons

VOCs = Volatile Organic Compounds

SVOCs = Semi-Volatile Organic Compounds

PCBs = Polychlorinated Biphenyls

Bold indicates a detection above laboratory reporting limits

Highlighted results indicate an exceedance of numerical criteria.